北京课改版七年级下册第八章 因式分解综合与测试课时训练
展开
这是一份北京课改版七年级下册第八章 因式分解综合与测试课时训练,共16页。试卷主要包含了下列因式分解正确的是,下列多项式因式分解正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列分解因式正确的是( )A. B.C. D.2、下列各式中从左到右的变形,是因式分解的是( )A. B.C. D.3、已知,,那么的值为( )A.3 B.6 C. D.4、下列因式分解正确的是( )A.x2-4x+4=x(x-4)+4 B.9-6(m-n)+(n-m)2=(3-m+n)2C.4x2+2x+1=(2x+1)2 D.x4-y4=(x2+y2)(x2-y2)5、下列各式中,从左到右的变形是因式分解的是( )A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣4xy+4y2=(x﹣2y)2 D.x2+1=x(x+)6、下列各式中,由左向右的变形是分解因式的是( )A. B.C. D.7、下列多项式因式分解正确的是( )A. B.C. D.8、下列因式分解正确的是( )A.a2+1=a(a+1) B.C.a2+a﹣5=(a﹣2)(a+3)+1 D.9、下列各式从左到右的变形是因式分解的是( )A.ax+bx+c=(a+b)x+c B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+2ab+b2 D.a2﹣5a﹣6=(a﹣6)(a+1)10、下列等式中,从左到右的变形是因式分解的是( )A.a(a-3)=a2-3a B.(a+3)2=a2+6a+9C.6a2+1=a2(6+) D.a2-9=(a+3)(a-3)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解: _______________________.2、把多项式分解因式结果是______.3、分解因式__________.4、因式分解:2a2﹣4ab+2b2=_____.5、分解因式:25x2﹣16y2=_____.三、解答题(5小题,每小题10分,共计50分)1、因式分解:(1)18x-2y (2)a3 b+2a2 b2+ab3 .2、分解因式(1)(2)3、(1)因式分解: (2)计算:4、因式分解.(1)(2)(3)5、已知,.求:(1)的值;(2)的值. ---------参考答案-----------一、单选题1、C【解析】【分析】根据因式分解的方法逐个判断即可.【详解】解:A. ,原选项错误,不符合题意;B. ,原选项错误,不符合题意;C. ,正确,符合题意;D. ,原选项错误,不符合题意;故选:C.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.2、B【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.,单项式不能因式分解,故此选项不符合题意;B.,是因式分解,故此选项符合题意;C.,是整式计算,故此选项不符合题意;D.,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:B.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.3、D【解析】【分析】根据完全平方公式求出,再把原式因式分解后可代入求值.【详解】解:因为,,所以,所以故选:D【点睛】考核知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键.4、B【解析】【分析】利用公式法进行因式分解判断即可.【详解】解:A、,故A错误,B、9-6(m-n)+(n-m)2=(3-m+n)2,故B正确,C、4x2+2x+1,无法因式分解,故C错误,D、,因式分解不彻底,故D错误,故选:B.【点睛】本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底.5、C【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从左到右的变形不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.从左到右的变形属于因式分解,故本选项符合题意;D.等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;故选:C.【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式.6、B【解析】【分析】判断一个式子是否是因式分解的条件是①等式的左边是一个多项式,②等式的右边是几个整式的积,③左、右两边相等,根据以上条件进行判断即可.【详解】解:A、,不是因式分解;故A错误;B、,是因式分解;故B正确;C、,故C错误;D、,不是因式分解,故D错误;故选:B.【点睛】本题考查了因式分解的意义,把多项式转化成几个整式积的形式是解题关键.7、D【解析】【分析】根据因式分解的定义,把一个多项式化乘几个因式积的形式可判断A,还能继续因式分解可判断B,因式中不能出现分式可判断C,利用完全平方公式因式分解可判断D.【详解】解:A. ,因为括号外还有-5,不是乘积形式,故选项A不正确;B. ,因式分解不彻底,故选项B不正确;C. 因式中出现分式,故选项C不正确;D. 根据完全平方公式因式分解,故选项D正确.故选择D.【点睛】本题考查因式分解,掌握因式分解的方法与要求,注意因式分解是几个因式乘积,分解彻底不能再分解为止,因式中不能出现分式.8、D【解析】【分析】根据因式分解的定义严格判断即可.【详解】∵+1≠a(a+1)∴A分解不正确;∵,不是因式分解,∴B不符合题意;∵(a﹣2)(a+3)+1含有加法运算,∴C不符合题意;∵,∴D分解正确;故选D.【点睛】本题考查了因式分解,即把一个多项式写成几个因式的积,熟练进行因式分解是解题的关键.9、D【解析】【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、ax+bx+c=(a+b)x+c,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(a+b)(a﹣b)=a2﹣b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(a+b)2=a2+2ab+b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a2﹣5a﹣6=(a﹣6)(a+1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.10、D【解析】【分析】根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可.【详解】解:A、a(a-3)=a2-3a,属于整式乘法,不符合题意;B、(a+3)2=a2+6a+9,属于整式乘法,不符合题意;C、6a2+1=a2(6+)不是因式分解,不符合题意;D、a2-9=(a+3)(a3)属于因式分解,符合题意;故选:D【点睛】本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式.二、填空题1、【解析】【分析】根据提取公因式和平方差公式进行分解即可;【详解】原式;故答案是:.【点睛】本题主要考查了利用提取公因式和平方差公式因式分解,准确求解是解题的关键.2、【解析】【分析】利用平方差公式分解得到结果,即可做出判断.【详解】解:== 故答案为:【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.3、【解析】【分析】直接利用提公因式法分解因式即可.【详解】解:.故答案为:.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.4、【解析】【分析】先提取公因式2,再利用完全平方公式计算可得.【详解】解:原式=.故答案为:【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.5、##【解析】【分析】利用平方差公式计算即可.【详解】解:原式==,故答案为:.【点睛】本题考查了利用平方差公式分解因式,掌握平方差公式的特征是解题的关键.三、解答题1、(1)2(3x+y)(3x-y);(2)ab(a+b)2【解析】【分析】(1)先提取公因式“2”,然后利用平方差公式分解因式即可;(2)先提取公因式“”,然后利用完全平方公式分解因式即可;【详解】解:(1) ;(2).【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.2、(1)4xy(y+1)2;(2)-5(a-b)2【解析】【分析】(1)提公因式后利用完全平方公式分解即可;(2)提公因式后利用完全平方公式分解即可.【详解】(1), ,=4xy(y+1)2;(2), ,=-5(a-b)2.【点睛】本题考查了提公因式法与公式法的综合运用,一定要注意有公因式先提公因式,然后再继续分解.3、(1);(2)【解析】【分析】(1)首先提取公因式,再根据完全平方公式计算,即可得到答案;(2)根据平方差公式和合并同类项的性质计算,即可得到答案.【详解】(1);(2).【点睛】本题考查了乘法公式、整式、因式分解的知识;解题的关键是熟练掌握平方差公式、完全平方公式,从而完成求解.4、(1);(2);(3)【解析】【分析】(1)由题意直接根据完全平方差公式即可进行因式分解;(2)由题意先提取公因式,进而利用平方差公式即可进行因式分解;(3)根据题意先提取公因式,进而利用平方差公式即可进行因式分解.【详解】解:(1)(2)(3)【点睛】本题考查整式的因式分解,熟练掌握提取公因式法和公式法是解答本题的关键.5、(1)48;(2)52【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形后,将各自的值代入计算即可求出值.【详解】解:(1)∵,.∴;(2)∵,.∴.【点睛】此题考查了因式分解,完全平方公式变形,代数式求值,熟练掌握因式分解方法,完全平方公式是解本题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试同步测试题,共16页。
这是一份北京课改版七年级下册第八章 因式分解综合与测试练习,共16页。试卷主要包含了下列各式的因式分解中正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课后练习题,共16页。试卷主要包含了下列多项式中有因式x﹣1的是,把分解因式的结果是.,下列因式分解中,正确的是等内容,欢迎下载使用。