搜索
    上传资料 赚现金
    英语朗读宝

    难点详解沪科版九年级数学下册第24章圆专题练习试卷(精选)

    难点详解沪科版九年级数学下册第24章圆专题练习试卷(精选)第1页
    难点详解沪科版九年级数学下册第24章圆专题练习试卷(精选)第2页
    难点详解沪科版九年级数学下册第24章圆专题练习试卷(精选)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第24章 圆综合与测试精练

    展开

    这是一份数学九年级下册第24章 圆综合与测试精练,共29页。
    沪科版九年级数学下册第24章圆专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线绕着原点旋转180°,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是(   A.它们的开口方向相同 B.它们的对称轴相同C.它们的变化情況相同 D.它们的顶点坐标相同2、若的圆心角所对的弧长是,则此弧所在圆的半径为(    A.1 B.2 C.3 D.43、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为(    A.45° B.60° C.90° D.120°4、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于(  )A.10 B.6 C.6 D.125、如图,在中,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为(    A.3 B.4 C.5 D.66、平面直角坐标系中点关于原点对称的点的坐标是(    A. B. C. D.7、如图,AB 为⊙O 的直径,弦 CDAB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为(   A.3 B.2 C.1 D.8、如图,四边形内接于,如果它的一个外角,那么的度数为(    A. B. C. D.9、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为(    A.30° B.60°C.90° D.120°10、下列图形中,既是中心对称图形也是轴对称图形的是(    A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,PMPN分别与⊙O相切于AB两点,C为⊙O上异于AB的一点,连接ACBC.若∠P=58°,则∠ACB的大小是___________.2、如图,已知扇形的圆心角为60°,半径为2,则图中弓形(阴影部分)的面积为______.3、如图,已知,外心为,分别以为腰向形外作等腰直角三角形,连接交于点,则的最小值是______.4、如图,PAPB分别切⊙O于点ABQ是优弧上一点,若∠P=40°,则∠Q的度数是________.5、如图,AB是半圆O的直径,点D在半圆O上,C是弧BD上的一个动点,连接AC,过D点作H.连接BH,则在点C移动的过程中,线段BH的最小值是______.三、解答题(5小题,每小题10分,共计50分)1、如图,正方形ABCD的顶点ABx轴的负半轴上,顶点CD在第二象限.将正方形ABCD绕点A按顺时针方向旋转,BCD的对应点分别为B1C1D1,且D1C1O三点在一条直线上.记点D1的坐标是(mn),C1的坐标是(pq).(1)设∠DAD1=30°,n=2,求证:OD1的长度;(2)若∠DAD1<90°,mn满足m+n=﹣4,p2+q2=25,求p+q的值.2、如图 1,O为直线 DE上一点,过点 O在直线 DE上方作射线 OC,∠EOC=130°.将直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条边 OA在射线 OD上,另一边 OB在直线 DE上方,将直角三角板绕点 O 按每秒 5°的速度逆时针旋转一周,设旋转时间为t 秒.(1)如图2,当t=4 时,∠AOC=     ,∠BOE=     ,∠BOE﹣∠AOC=     (2)当三角板旋转至边 AB与射线 OE相交时(如图 3),试猜想∠AOC与∠BOE的数量关系,并说明理由;(3)在旋转过程中,是否存在某个时刻,使得射线 OAOCOD 中的某一条射线是另两条射线所成夹角的角平分线?若存在,请直接写出 t 的取值,若不存在,请说明理由.3、请阅读下列材料,并完成相应的任务:阿基米德是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.阿拉伯Al-Binmi (973-1050 年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Binmi详本出版了俄文版《阿基米德全集》.第一题就是阿基米德折弦定理.阿基米德折弦定理:如图1,的两条弦(即折线是圆的一条折弦),的中点,则从所作垂线的垂足是折弦的中点,即下面是运用“截长法”证明的部分证明过程.证明:如图2,在上截取,连接的中点,任务:(1)请按照上面的证明思路,写出该证明部分;(2)填空:如图3,已知等边内接于上一点,于点,则的周长是_________.4、如图1,点O为直线AB上一点,将两个含60°角的三角板MON和三角板OPQ如图摆放,使三角板的一条直角边OMOP在直线AB上,其中(1)将图1中的三角板OPQ绕点O按逆时针方向旋转至图2的位置,使得边OP的内部且平分,此时三角板OPQ旋转的角度为______度;(2)三角板OPQ在绕点O按逆时针方向旋转时,若OP的内部.试探究之间满足什么等量关系,并说明理由;(3)如图3,将图1中的三角板MON绕点O以每秒2°的速度按顺时针方向旋转,同时将三角板OPQ绕点O以每秒3°的速度按逆时针方向旋转,将射线OB绕点O以每秒5°的速度沿逆时针方向旋转,旋转后的射线OB记为OE,射线OC平分,射线OD平分,当射线OCOD重合时,射线OE改为绕点O以原速按顺时针方向旋转,在OCOD第二次相遇前,当时,直接写出旋转时间t的值.5、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)(1)画出关于原点对称的图形,并写出点的坐标;(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;(3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中) -参考答案-一、单选题1、B【分析】根据旋转的性质及抛物线的性质即可确定答案.【详解】抛物线的开口向上,对称轴为y轴,顶点坐标为(0,2),将此抛物线绕原点旋转180°后所得新抛物线的开口向下,对称轴仍为y轴,顶点坐标为(0,-2),所以在四个选项中,只有B选项符合题意.故选:B【点睛】本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键.2、C【分析】先设半径为r,再根据弧长公式建立方程,解出r即可【详解】设半径为r则周长为2πr120°所对应的弧长为解得r=3故选C【点睛】本题考查弧长计算,牢记弧长公式是本题关键.3、B【分析】设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得 ,求出β即可解决问题.【详解】解:设∠ADC=α,∠ABC=β∵四边形ABCO是菱形, ∴∠ABC=∠AOCADC=β 四边形为圆的内接四边形,α+β=180°, 解得:β=120°,α=60°,则∠ADC=60°, 故选:B.【点睛】该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.4、D【分析】连接OBOC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【详解】解:连接OBOC∵∠BAC=30°,∴∠BOC=60°.OB=OCBC=6,∴△OBC是等边三角形,OB=BC=6.∴⊙O的直径等于12.故选:D.【点睛】本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键.5、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.【详解】由旋转的性质得:是等边三角形,故选:A.【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.6、B【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:平面直角坐标系中点关于原点对称的点的坐标是故选B【点睛】本题考查了关于原点对称的点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.7、B【分析】连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.【详解】解:连接OC,如图AB 为⊙O 的直径,CDAB,垂足为点 ECD=8,故选:B【点睛】本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出8、D【分析】由平角的性质得出∠BCD=116°,再由内接四边形对角互补得出∠A=64°,再由圆周角定理即可求得∠BOD=2∠A=128°.【详解】∵四边形内接于又∵故选:D.【点睛】本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半.9、B【分析】由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.【详解】解:因为每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°,所以每次旋转相同角度 .故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.10、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意.故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.二、填空题1、【分析】如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接 (即)分别在优弧与劣弧上, PMPN分别与⊙O相切于AB两点, 故答案为:【点睛】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.2、【分析】根据弓形的面积=扇形的面积-三角形的面积求解即可.【详解】解:如图,ACOB∵圆心角为60°,OA=OB∴△OAB是等边三角形,OC=OB=1,AC=SOAB=OB×AC=×2×=S扇形OAB==∴弓形(阴影部分)的面积= S扇形OAB- SOAB=故答案为:【点睛】本题考查扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法以及直角三角形的边角关系是正确解答的关键.3、【分析】是等腰直角三角形,得到,根据全等三角形的性质得到,求得在以为直径的圆上,由的外心为,得到,如图,当时,的值最小,解直角三角形即可得到结论.【详解】解:是等腰直角三角形,中,在以为直径的圆上,的外心为如图,当时,的值最小,的最小值是故答案为:【点睛】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.4、70°度【分析】连接OAOB,根据切线性质可得∠OAP=∠OBP=90°,再根据四边形的内角和为360°求得∠AOB,然后利用圆周角定理求解即可.【详解】解:连接OAOBPAPB分别切⊙O于点AB∴∠OAP=∠OBP=90°,又∠P=40°,∴∠AOB=360°-90°-90°-40°=140°,∴∠Q=AOB=70°,故答案为:70°.【点睛】本题考查切线性质、四边形内角和为360°、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键.5、##【分析】连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当三点共线时,最小;求出,在中,,所以,即为所求.【详解】解:连接,取的中点,连接点在以为圆心,为半径的圆上,三点共线时,最小,是直径,中,故答案为:【点睛】本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹.三、解答题1、(1)4;(2)-1或-7【分析】(1)如图,三点在一条直线上的情况,连接,过点作垂线交点为,在直角三角形中,,可求的长;(2)如图,过点作垂线交点为,过点轴垂线交于点,作交点为;由,知,点G坐标为,得,由的值,从而得到的值.【详解】解:(1)∵∠DAD1=30°且D1C1O三点在一条直线上∴如图所示,连接,过点作垂线交点为(2)如图过点作垂线交点为,过点轴垂线交于点,作交点为点横坐标可表示为p+q=-7或-1.【点睛】本题考查了锐角三角函数值,三角形全等,图形旋转的性质等知识.解题的关键与难点是找出线段之间的关系.2、(1)30°,70°,40°;(2)∠AOC-∠BOE=40°,理由见解析;(3)t 的取值为5或20或62【分析】(1)先根据已知求出∠DOC、∠BOC,再求出当t=4时的旋转角的度数,再利用角的和与差求解即可;(2)设旋转角为x,用x表示∠AOC和∠BOE,即可得出结论;(3)分①OA为∠DOC的平分线;②OC为∠DOA的平分线;③OD为∠COA的平分线三种情况,利用角平分线定义和旋转性质求出旋转角即可.(1)解:∵∠EOC=130°,∠AOB=∠BOE=90°,∴∠DOC=180°-130°=50°,∠BOC=130°-90°=40°,t=4时,旋转角4×5°=20°,∴∠AOC=∠DOC-∠DOA=50°-20°=30°,∠BOE=90°-20°=70°,BOE-∠AOC=70°-30°=40°,故答案为:30°,70°,40°;(2)解:∠AOC-∠BOE=40°,理由为:设旋转角为x,当三角板旋转至边 AB与射线 OE相交时,AOC=x-50°,∠BOE=x-90°,∴∠AOC-∠BOE=x-50°)-(x-90°)=40°;(3)解:存在,①当OA为∠DOC的平分线时,旋转角5t =DOC=25,t=5;②当OC为∠DOA的平分线时,旋转角5t =2∠DOC=100,t=20;③当OD为∠COA的平分线时,360-5t=∠DOC=50,t=62,综上,满足条件的t 的取值为5或20或62.【点睛】本题考查角平分线的定义、旋转的性质、角的运算,熟练掌握旋转性质,利用分类讨论思想求解是解答的关键.3、(1)证明见解析;(2)【分析】(1)首先证明,进而得出,再利用等腰三角形的性质得出,即可得出答案;(2)首先证明,进而得出,以及,进而求出的长即可得出答案.(1)证明:如图2,在上截取,连接的中点,(2)解:如图3,截取,连接由题意可得:,则 故答案为:【点睛】此题主要考查了圆与三角形综合,涉及了圆周角定理、全等三角形的判定与性质以及等腰三角形以及等边三角形的性质,正确作出辅助线利用全等三角形的判定与性质解题是解题关键.4、(1)135°(2)∠MOP-∠NOQ=30°,理由见解析(3)ss【分析】(1)先根据OP平分得到∠PON,然后求出∠BOP即可;(2)先根据题意可得∠MOP=90°-∠POQ, ∠NOQ=60°-∠POQ,然后作差即可;(3)先求出旋转前OCOD的夹角,然后再求出OCOD第一次和第二次相遇所需要的时间,再设在OCOD第二次相遇前,当时,需要旋转时间为t,再分OEOC的左侧和OEOC的右侧两种情况解答即可.(1)解:∵OP平分∠MON∴∠PON=MON=45°∴三角板OPQ旋转的角:∠BOP=∠PON+∠NOB=135°.故答案是135°(2)解:∠MOP-∠NOQ=30°,理由如下:∵∠MON=90°,∠POQ=60°∴∠MOP=90°-∠POQ, ∠NOQ=60°-∠POQ,∴∠MOP-∠NOQ=90°-∠POQ -(60°-∠POQ)=30°.(3)解:∵射线OC平分,射线OD平分∴∠NOC=45°,∠POD=30°∴选择前OCOD的夹角为∠COD=∠NOC+∠NOP+∠POD=165°OCOD第一次相遇的时间为165°÷(2°+3°)=33秒,此时OB旋转的角度为33×5°=165°∴此时OCOE的夹角165-(180-45-2×33)=96°OCOD第二次相遇需要时间360°÷(3°+2°)=72秒设在OCOD第二次相遇前,当时,需要旋转时间为t①当OEOC的左侧时,有(5°-2°)t=96°-13°,解得:t=s②当OEOC的右侧时,有(5°-2°)t=96°+13°,解得:t=s然后,①②都是每隔360÷(5°-2°)=120秒,出现一次这种现象CD第二次相遇需要时间72秒∴在OCOD第二次相遇前,当时,、旋转时间t的值为ss【点睛】本题主要考查了角平分线的定义、平角的定义、一元一次方程的应用等知识点,灵活运用相关知识成为解答本题的关键.5、(1)见解析,(2)见解析,(3)绕点O顺时针时针旋转【分析】(1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;(2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;(3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解.(1)解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:(2)解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:(3)解:根据题意得:绕点O顺时针时针旋转后可直接得到【点睛】本题主要考查了图形的变换——画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键. 

    相关试卷

    沪科版九年级下册第24章 圆综合与测试同步测试题:

    这是一份沪科版九年级下册第24章 圆综合与测试同步测试题,共28页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    沪科版九年级下册第24章 圆综合与测试达标测试:

    这是一份沪科版九年级下册第24章 圆综合与测试达标测试,共32页。

    2021学年第24章 圆综合与测试一课一练:

    这是一份2021学年第24章 圆综合与测试一课一练,共32页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map