年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷沪科版九年级数学下册第24章圆专项测评试题(含详细解析)

    精品试卷沪科版九年级数学下册第24章圆专项测评试题(含详细解析)第1页
    精品试卷沪科版九年级数学下册第24章圆专项测评试题(含详细解析)第2页
    精品试卷沪科版九年级数学下册第24章圆专项测评试题(含详细解析)第3页
    还剩29页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试课时练习

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时练习,共32页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )
    A.B.C.D.
    2、下面的图形中既是轴对称图形又是中心对称图形的是( )
    A.B.C.D.
    3、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )
    A.直径所对圆周角为B.如果点在圆上,那么点到圆心的距离等于半径
    C.直径是最长的弦D.垂直于弦的直径平分这条弦
    4、下列图形中,既是轴对称图形,又是中心对称图形的是( )
    A.B.C.D.
    5、下列各点中,关于原点对称的两个点是( )
    A.(﹣5,0)与(0,5)B.(0,2)与(2,0)
    C.(﹣2,﹣1)与(﹣2,1)D.(2,﹣1)与(﹣2,1)
    6、如图,AB,BC,CD分别与⊙O相切于E、F、G三点,且ABCD,BO=3,CO=4,则OF的长为( )
    A.5B.C.D.
    7、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )
    A.3B.4C.5D.6
    8、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是( )
    A.B.1C.2D.
    9、点P(3,﹣2)关于原点O的对称点的坐标是( )
    A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2)D.(2,3)
    10、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )
    A.B.
    C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P = 50°,则∠ACB =_____________°
    2、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为______.
    3、斛是中国古代的一种量器.据《汉书 .律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiā)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,
    问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为________尺.
    4、如图,、分别与相切于A、B两点,若,则的度数为________.
    5、 “化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积.这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的.如果借用一个圆形纸片,我们就可以化圆为方,方法如下:
    已知:⊙O(纸片),其半径为.
    求作:一个正方形,使其面积等于⊙O的面积.
    作法:①如图1,取⊙O的直径,作射线,过点作的垂线;
    ②如图2,以点为圆心,为半径画弧交直线于点;
    ③将纸片⊙O沿着直线向右无滑动地滚动半周,使点,分别落在对应的,处;
    ④取的中点,以点为圆心,为半径画半圆,交射线于点;
    ⑤以为边作正方形.
    正方形即为所求.
    根据上述作图步骤,完成下列填空:
    (1)由①可知,直线为⊙O的切线,其依据是________________________________.
    (2)由②③可知,,,则_____________,____________(用含的代数式表示).
    (3)连接,在Rt中,根据,可计算得_________(用含的代数式表示).由此可得.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在方格纸中,已知顶点在格点处的△ABC,请画出将△ABC绕点C旋转180°得到的△A'B'C'.(需写出△A'B'C'各顶点的坐标).
    2、如图,抛物线y=-+x+2与x轴负半轴交于点A,与y轴交于点B.
    (1)求A,B两点的坐标;
    (2)如图1,点C在y轴右侧的抛物线上,且AC=BC,求点C的坐标;
    (3)如图2,将△ABO绕平面内点P顺时针旋转90°后,得到△DEF(点A,B,O的对应点分别是点D,E,F),D,E两点刚好在抛物线上.
    ①求点F的坐标;
    ②直接写出点P的坐标.

    3、如图,正方形ABCD是半径为R的⊙O内接四边形,R=6,求正方形ABCD的边长和边心距.
    4、如图,在△ABC中,∠C=90°,点O为边BC上一点.以O为圆心,OC为半径的⊙O与边AB相切于点D.
    (1)尺规作图:画出⊙O,并标出点D(不写作法,保留作图痕迹);
    (2)在(1)所作的图中,连接CD,若CD=BD,且AC=6.求劣弧的长.
    5、如图1,在中,,,点D为AB边上一点.
    (1)若,则______;
    (2)如图2,将线段CD绕着点C逆时针旋转90°得到线段CE,连接AE,求证:;
    (3)如图3,过点A作直线CD的垂线AF,垂足为F,连接BF.直接写出BF的最小值.
    -参考答案-
    一、单选题
    1、A
    【分析】
    如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.
    【详解】
    解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点,
    记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:
    四边形为正方形,则

    设 而AB=2,CD=3,EF=5,结合正方形的性质可得:



    又 而


    解得:

    故选A
    【点睛】
    本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.
    2、A
    【详解】
    解:A、既是轴对称图形又是中心对称图形,此项符合题意;
    B、是中心对称图形,不是轴对称图形,此项不符题意;
    C、是轴对称图形,不是中心对称图形,此项不符题意;
    D、是轴对称图形,不是中心对称图形,此项不符题意;
    故选:A.
    【点睛】
    本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.
    3、A
    【分析】
    定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.
    【详解】
    A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;
    B、C选项,根据圆的定义可以得到;
    D选项,是垂径定理;
    故选:A
    【点睛】
    本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.
    4、C
    【详解】
    解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;
    选项B不是轴对称图形,是中心对称图形,故B不符合题意;
    选项C既是轴对称图形,也是中心对称图形,故C符合题意;
    选项D是轴对称图形,不是中心对称图形,故D不符合题意;
    故选C
    【点睛】
    本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.
    5、D
    【分析】
    根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.
    【详解】
    解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;
    B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;
    C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;
    D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;
    故选:D.
    【点睛】
    本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
    6、D
    【分析】
    连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.
    【详解】
    解:连接OF,OE,OG,
    ∵AB、BC、CD分别与相切,
    ∴,,,且,
    ∴OB平分,OC平分,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,

    ∴SΔOBC=12OB·OC=12BC·OF,
    ∴,
    故选:D.
    【点睛】
    题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.
    7、A
    【分析】
    先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.
    【详解】
    由旋转的性质得:,

    是等边三角形,



    故选:A.
    【点睛】
    本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.
    8、A
    【分析】
    取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
    【详解】
    解:如图,取BC的中点G,连接MG,
    ∵旋转角为60°,
    ∴∠MBH+∠HBN=60°,
    又∵∠MBH+∠MBC=∠ABC=60°,
    ∴∠HBN=∠GBM,
    ∵CH是等边△ABC的对称轴,
    ∴HB=AB,
    ∴HB=BG,
    又∵MB旋转到BN,
    ∴BM=BN,
    在△MBG和△NBH中,

    ∴△MBG≌△NBH(SAS),
    ∴MG=NH,
    根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
    此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,
    ∴MG=CG=,
    ∴HN=,
    故选A.
    【点睛】
    本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
    9、B
    【分析】
    根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.
    【详解】
    解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).
    故选:B.
    【点睛】
    本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.
    10、D
    【分析】
    根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
    【详解】
    解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
    C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
    D.既是轴对称图形,又是中心对称图形,故本选项符合题意.
    故选:D.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    二、填空题
    1、
    【分析】
    连接,根据切线的性质以及四边形内角和定理求得,进而根据圆周角定理即可求得∠ACB
    【详解】
    解:连接,如图,
    PA,PB分别与⊙O相切
    故答案为:
    【点睛】
    本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.
    2、##
    【分析】
    如图所示,取D(-2,0),连接BD,连接CD与圆C交于点,先求出A点坐标,从而可证OM是△ABD的中位线,得到,则当BD最小时,OM也最小,即当B运动到时,BD有最小值,由此求解即可.
    【详解】
    解:如图所示,取D(-2,0),连接BD,连接CD与圆C交于点
    ∵点C的坐标为(2,2),圆C与x轴相切于点A,
    ∴点A的坐标为(2,0),
    ∴OA=OD=2,即O是AD的中点,
    又∵M是AB的中点,
    ∴OM是△ABD的中位线,
    ∴,
    ∴当BD最小时,OM也最小,
    ∴当B运动到时,BD有最小值,
    ∵C(2,2),D(-2,0),
    ∴,
    ∴,
    ∴,
    故答案为:.
    【点睛】
    本题主要考查了坐标与图形,一点到圆上一点的距离得到最小值,两点距离公式,三角形中位线定理,把求出OM的最小值转换成求BD的最小值是解题的关键.
    3、
    【分析】
    如图,根据四边形CDEF为正方形,可得∠D=90°,CD=DE,从而得到CE是直径,∠ECD=45°,然后利用勾股定理,即可求解.
    【详解】
    解:如图,
    ∵四边形CDEF为正方形,
    ∴∠D=90°,CD=DE,
    ∴CE是直径,∠ECD=45°,
    根据题意得:AB=2.5, ,
    ∴ ,
    ∴ ,
    即此斛底面的正方形的边长为 尺.
    故答案为:
    【点睛】
    本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键.
    4、
    【分析】
    根据已知条件可得出,,再利用圆周角定理得出即可.
    【详解】
    解:、分别与相切于、两点,
    ,,



    故答案为:.
    【点睛】
    本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键.
    5、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2),;(3)
    【分析】
    (1)根据切线的定义判断即可.
    (2)由=AC+,计算即可;根据计算即可.
    (3)根据勾股定理,得即为正方形的面积,比较与圆的面积的大小关机即可.
    【详解】
    解:(1)∵⊙O的直径,作射线,过点作的垂线,
    ∴经过半径外端且垂直于这条半径的直线是圆的切线;
    故答案为:经过半径外端且垂直于这条半径的直线是圆的切线;
    (2)根据题意,得AC=r,==πr,
    ∴=AC+=r+πr,
    ∴=;
    ∵,
    ∴MA=-r=,
    故答案为:,;
    (3)如图,连接ME,
    根据勾股定理,得
    =
    =;
    故答案为:.
    【点睛】
    本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键.
    三、解答题
    1、A'(-1,-3),B'(1,-1),C'(-2,0),画图见解析.
    【分析】
    先画出点A,B关于点C中心对称的点A',B',再连接A',B',C即可解题.
    【详解】
    解: A关于点C中心对称的点A'(-1,-3),B关于点C中心对称的点B'(1,-1),C关于点C中心对称的点C'(-2,0),如图,△A'B'C'即为所求作图形.
    【点睛】
    本题考查中心对称图形,是基础考点,掌握相关知识是解题关键.
    2、(1)A(-1,0),B(0,2);(2)点C的坐标(,);(3)①求点F的坐标(1,2);②点P的坐标(,)
    【分析】
    (1)令x=0,求得y值,得点B的坐标;令y=0,求得x的值,取较小的一个即求A点的坐标;
    (2)设C的坐标为(x,-+x+2),根据AC=BC,得到,令t=-+x,解方程即可;
    (3)①根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,根据B,E都在抛物线上,则B,E是对称点,从而确定点P在抛物线的对称轴上,点F在BE上,且BE∥x轴,点E(3,2),确定BE=3,根据旋转性质,得EF=BO=2,从而确定点F的坐标;
    ②根据BE=3,∠BPE=90°,PB=PE,确定P到BE的距离,即可写出点P的坐标.
    【详解】
    (1)令x=0,得y=2,
    ∴点B的坐标为B(0,2);
    令y=0,得-+x+2=0,
    解得
    ∵点A在x轴的负半轴;
    ∴A点的坐标(-1,0);
    (2)设C的坐标为(x,-+x+2),
    ∵AC=BC,A(-1,0),B(0,2),
    ∴,
    ∵A(-1,0),B(0,2),
    ∴,
    即,
    设t=-+x,
    ∴,
    ∴,
    ∴,
    ∴,
    整理,得,
    解得
    ∵点C在y轴右侧的抛物线上,
    ∴,
    此时y=,
    ∴点C的坐标(,);
    (3)①如图,根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,
    ∵B,E都在抛物线上,
    ∴B,E是对称点,
    ∴点P在抛物线的对称轴上,点F在BE上,且BE∥x轴,
    ∵抛物线的对称轴为直线x=,B(0,2),
    ∴点E(3,2),BE=3,
    ∵EF=BO=2,
    ∴BF=1,
    ∴点F的坐标为(1,2);
    ②如图,设抛物线的对称轴与BE交于点M,交x轴与点N,
    ∵BE=3,
    ∴BM=,
    ∵∠BPE=90°,PB=PE,
    ∴PM=BM=,
    ∴PM=BM=,
    ∴PN=2-=,
    ∴点P的坐标为(,).
    【点睛】
    本题考查了抛物线与坐标轴的交点,旋转的性质,两点间的距离公式,一元二次方程的解法,换元法解方程,熟练掌握抛物线的对称性,灵活理解旋转的意义,熟练解一元二次方程是解题的关键.
    3、边长为,边心距为
    【分析】
    过点O作OE⊥BC,垂足为E,利用圆内接四边形的性质求出∠BOC=90°,∠OBC=45°,然后在Rt△OBE中,根据勾股定理求出OE、BE即可.
    【详解】
    解:过点O作OE⊥BC,垂足为E,
    ∵正方形ABCD是半径为R的⊙O内接四边形,R=6,
    ∴∠BOC==90°,∠OBC=45°,OB=OC=6,
    ∴BE=OE.
    在Rt△OBE中,∠BEO=90°,由勾股定理可得
    ∵OE2+BE2=OB2,
    ∴OE2+BE2=36,
    ∴OE= BE=,
    ∴BC=2BE=,
    即半径为6的圆内接正方形ABCD的边长为,边心距为.
    【点睛】
    本题考查了圆内接四边形的性质,以及勾股定理,正多边形各边所对的外接圆的圆心角都相等,正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角,正n边形每个中心角都等于.
    4、(1)作图见解析;(2)
    【分析】
    (1)由于D点为⊙O的切点,即可得到OC=OD,且OD⊥AB,则可确定O点在∠A的角平分线上,所以应先画出∠A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;
    (2)连接CD和OD,根据切线长定理,以及圆的基本性质,求出∠DCB的度数,然后进一步求出∠COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可.
    【详解】
    解:(1)如图所示,先作∠A的角平分线,交BC于O点,以O为圆心,OC为半径画出⊙O即为所求;
    (2)如图所示,连接CD和OD,
    由题意,AD为⊙O的切线,
    ∵OC⊥AC,且OC为半径,
    ∴AC为⊙O的切线,
    ∴AC=AD,
    ∴∠ACD=∠ADC,
    ∵CD=BD,
    ∴∠B=∠DCB,
    ∵∠ADC=∠B+∠BCD,
    ∴∠ACD=∠ADC=2∠DCB,
    ∵∠ACB=90°,
    ∴∠ACD+∠DCB=90°,
    即:3∠DCB=90°,
    ∴∠DCB=30°,
    ∵OC=OD,
    ∴∠DCB=∠ODC=30°,
    ∴∠COD=180°-2×30°=120°,
    ∵∠DCB=∠B=30°,
    ∴在Rt△ABC中,∠BAC=60°,
    ∵AO平分∠BAC,
    ∴∠CAO=∠DAO=30°,
    ∴在Rt△ACO中,,
    ∴.
    【点睛】
    本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键.
    5、
    (1)5
    (2)证明见解析
    (3)
    【分析】
    (1)过C作CM⊥AB于M,根据等腰三角形的性质求出CM和DM,再根据勾股定理计算即可;
    (2)连BE,先证明,即可得到直角三角形ABE,利用勾股定理证明即可;
    (3)取AC中点N,连接FN、BN,根据三角形BFN中三边关系判断即可.
    (1)
    过C作CM⊥AB于M,
    ∵,



    ∴在Rt中
    (2)
    连接BE,
    ∵,,,
    ∴,

    ∴,

    在Rt中


    (3)
    取AC中点N,连接FN、BN,
    ∵,,

    ∵AF垂直CD

    ∵AC中点N,


    ∵三角形BFN中

    ∴当B、F、N三点共线时BF最小,最小值为.
    【点睛】
    本题考查等腰直角三角形的常用辅助线以及直角三角形斜边上的中线,解题的关键是根据等腰直角三角形作斜边垂线或者构造“手拉手模型”.

    相关试卷

    沪科版九年级下册第24章 圆综合与测试同步测试题:

    这是一份沪科版九年级下册第24章 圆综合与测试同步测试题,共34页。试卷主要包含了下列语句判断正确的是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试一课一练:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试一课一练,共38页。试卷主要包含了等边三角形等内容,欢迎下载使用。

    初中沪科版第24章 圆综合与测试课后练习题:

    这是一份初中沪科版第24章 圆综合与测试课后练习题,共31页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map