初中数学沪科版九年级下册第24章 圆综合与测试综合训练题
展开
这是一份初中数学沪科版九年级下册第24章 圆综合与测试综合训练题,共34页。试卷主要包含了在圆内接四边形ABCD中,∠A,如图,是的直径,等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在Rt△ABC中,,,点D、E分别是AB、AC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为;③BP存在最小值为;④点P运动的路径长为.其中,正确的( )
A.①②③ B.①②④ C.①③④ D.②③④
2、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是( )
A.80° B.70° C.60° D.50°
3、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为( )
A.4 B.6 C.8 D.10
4、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为( )
A.140° B.100° C.80° D.40°
5、如图,是的直径,、是上的两点,若,则( )
A.15° B.20° C.25° D.30°
6、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转到点D落在AB边上,此时得到△EDC,斜边DE交AC边于点F,则图中阴影部分的面积为( )
A.3 B.1 C. D.
7、如图,点A,B,C均在⊙O上,连接OA,OB,AC,BC,如果OA⊥OB,那么∠C的度数为( )
A.22.5° B.45° C.90° D.67.5°
8、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是( )
A. B. C. D.
9、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是( )
A. B.1 C.2 D.
10、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、到点的距离等于8厘米的点的轨迹是__.
2、圆锥的母线长为,底面圆半径为r,则全面积为______.
3、如图,在⊙O中,弦AB⊥OC于E点,C在圆上,AB=8,CE=2,则⊙O的半径AO=___________.
4、如图,已知扇形的圆心角为60°,半径为2,则图中弓形(阴影部分)的面积为______.
5、如图,在Rt△ABC,∠B=90°,AB=BC=1,将△ABC绕着点C逆时针旋转60°,得到△MNC,那么BM=______________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,是⊙的直径,弦,垂足为E,弦与弦相交于点G,且,过点C作的垂线交的延长线于点H.
(1)判断与⊙的位置关系并说明理由;
(2)若,求弧的长.
2、如图,抛物线y=-+x+2与x轴负半轴交于点A,与y轴交于点B.
(1)求A,B两点的坐标;
(2)如图1,点C在y轴右侧的抛物线上,且AC=BC,求点C的坐标;
(3)如图2,将△ABO绕平面内点P顺时针旋转90°后,得到△DEF(点A,B,O的对应点分别是点D,E,F),D,E两点刚好在抛物线上.
①求点F的坐标;
②直接写出点P的坐标.
3、已知:如图,A为上的一点.
求作:过点A且与相切的一条直线.
作法:①连接OA;
②以点A为圆心,OA长为半径画弧,与的一个交点为B,作射线OB;
③以点B为圆心,OA长为半径画弧,交射线OB于点P(不与点O重合);
④作直线PA.
直线PA即为所求.
(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
(2)完成下面的证明.
证明:连接BA.
由作法可知.
∴点A在以OP为直径的圆上.
∴( )(填推理的依据).
∵OA是的半径,
∴直线PA与相切( )(填推理的依据).
4、下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.
已知:⊙O.
求作:⊙O的内接等腰直角三角形ABC.
作法:如图,
①作直径AB;
②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;
③作直线MO交⊙O于点C,D;
④连接AC,BC.
所以△ABC就是所求的等腰直角三角形.
根据小明设计的尺规作图过程,解决下面的问题:
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:连接MA,MB.
∵MA=MB,OA=OB,
∴MO是AB的垂直平分线.
∴AC= .
∵AB是直径,
∴∠ACB= ( ) (填写推理依据) .
∴△ABC是等腰直角三角形.
5、如图,和中,,,,连接,点M,N,P分别是的中点.
(1)请你判断的形状,并证明你的结论.
(2)将绕点A旋转,若,请直接写出周长的最大值与最小值.
-参考答案-
一、单选题
1、B
【分析】
根据,,点D、E分别是AB、AC的中点.得出∠DAE=90°,AD=AE=,可证∠DAB=∠EAC,再证△DAB≌△EAC(SAS),可判断①△AEC≌△ADB正确;作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,根据△AEC≌△ADB,得出∠DBA=∠ECA,可证∠P=∠BAC=90°,CP为⊙A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判断②CP存在最大值为正确;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判断③BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,可求∠ACE=30°,根据圆周角定理得出∠AOP=2∠ACE=60°,当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,可得∠ABD=30°根据圆周角定理得出∠AOP′=2∠ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,L可判断④点P运动的路径长为正确即可.
【详解】
解:∵,,点D、E分别是AB、AC的中点.
∴∠DAE=90°,AD=AE=,
∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,
∴∠DAB=∠EAC,
在△DAB和△EAC中,
,
∴△DAB≌△EAC(SAS),
故①△AEC≌△ADB正确;
作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,
∵△AEC≌△ADB,
∴∠DBA=∠ECA,
∴∠PBA+∠P=∠ECP+∠BAC,
∴∠P=∠BAC=90°,
∵CP为⊙A的切线,
∴AE⊥CP,
∴∠DPE=∠PEA=∠DAE=90°,
∴四边形DAEP为矩形,
∵AD=AE,
∴四边形DAEP为正方形,
∴PE=AE=3,
在Rt△AEC中,CE=,
∴CP最大=PE+EC=3+,
故②CP存在最大值为正确;
∵△AEC≌△ADB,
∴BD=CE=,
在Rt△BPC中,BP最小=,
BP最短=BD-PD=-3,
故③BP存在最小值为不正确;
取BC中点为O,连结AO,OP,
∵AB=AC=6,∠BAC=90°,
∴BP=CO=AO=,
当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,
∴∠ACE=30°,
∴∠AOP=2∠ACE=60°,
当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,
∴∠ABD=30°,
∴∠AOP′=2∠ABD=60°,
∴点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,
∵∠POP=∠POA+∠AOP′=60°+60°=120°,
∴L.
故④点P运动的路径长为正确;
正确的是①②④.
故选B.
【点睛】
本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键.
2、A
【分析】
根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.
【详解】
证明:∵绕点C逆时针旋转得到,
∴,,
∴∠ADC=∠DAC,
∵点A,D,E在同一条直线上,
∴,
∴∠DAC=50°,
∴∠BAD=∠BAC-∠DAC=80°
故选A.
【点睛】
本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.
3、A
【分析】
根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.
【详解】
解:∵AB是⊙O的直径,
∴ ,
∵∠BAC=30°,BC=2,
∴.
故选:A
【点睛】
本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.
4、C
【分析】
,,,进而求解的值.
【详解】
解:由题意知
∵
∴
∴
∵
∴
故选C.
【点睛】
本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.
5、C
【分析】
根据圆周角定理得到∠BDC的度数,再根据直径所对圆周角是直角,即可得到结论.
【详解】
解:∵∠BOC=130°,
∴∠BDC=∠BOC=65°,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠ADC=90°-65°=25°,
故选:C.
【点睛】
本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.
6、D
【分析】
根据题意及旋转的性质可得是等边三角形,则,,根据含30度角的直角三角形的性质,即可求得,由勾股定理即可求得,进而求得阴影部分的面积.
【详解】
解:如图,设与相交于点,
,,
,
旋转,
,
是等边三角形,
,,
,
,
,
,
,
阴影部分的面积为
故选D
【点睛】
本题考查了等边三角形的性质,勾股定理,含30度角的直角三角形的性质,旋转的性质,利用含30度角的直角三角形的性质是解题的关键.
7、B
【分析】
根据同弧所对的圆周角是圆心角的一半即可得.
【详解】
解:∵,
∴,
∴,
故选:B.
【点睛】
题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.
8、C
【分析】
如图,过点C作CT⊥AB于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,解直角三角形求出AB,求出CT的最大值,可得结论.
【详解】
解:如图,过点C作 CT⊥AB 于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,
由题意可得AB垂直平分线段OK,
∴AO=AK,OH=HK=3,
∵OA=OK,
∴OA=OK=AK,
∴∠OAK=∠AOK=60°,
∴AH=OA×sin60°=6×=3,
∵OH⊥AB,
∴AH=BH,
∴AB=2AH=6,
∵OC+OH⩾CT,
∴CT⩽6+3=9,
∴CT的最大值为9,
∴△ABC的面积的最大值为=27,
故选:C.
【点睛】
本题考查垂径定理、三角函数、三角形的面积、垂线段最短等知识,解题的关键是求出CT的最大值,属于中考常考题型.
9、A
【分析】
取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
【详解】
解:如图,取BC的中点G,连接MG,
∵旋转角为60°,
∴∠MBH+∠HBN=60°,
又∵∠MBH+∠MBC=∠ABC=60°,
∴∠HBN=∠GBM,
∵CH是等边△ABC的对称轴,
∴HB=AB,
∴HB=BG,
又∵MB旋转到BN,
∴BM=BN,
在△MBG和△NBH中,
,
∴△MBG≌△NBH(SAS),
∴MG=NH,
根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,
∴MG=CG=,
∴HN=,
故选A.
【点睛】
本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
10、D
【详解】
解:.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;
.不是轴对称图形,是中心对称图形,故本选项不符合题意;
.是轴对称图形,不是中心对称图形,故本选项不符合题意;
.既是轴对称图形,又是中心对称图形,故本选项符合题意.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
二、填空题
1、以点为圆心,8厘米长为半径的圆
【分析】
由题意直接根据圆的定义进行分析即可解答.
【详解】
到点的距离等于8厘米的点的轨迹是:以点为圆心,2厘米长为半径的圆.
故答案为:以点为圆心,8厘米长为半径的圆.
【点睛】
本题主要考查了圆的定义,正确理解定义是关键,注意掌握圆的定义是在同一平面内到定点的距离等于定长的点的集合.
2、
【分析】
根据圆锥的展开图为扇形,结合弧长公式、圆周长的求解公式、面积的求解公式,圆锥侧面积的求解公式可得出答案.
【详解】
解:圆锥的侧面展开图是一个扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆周长,
故可得,这个扇形的半径为,扇形的弧长为,
圆锥的侧面积为;
圆锥的全面积为圆锥的底面积侧面积:.
故答案为:.
【点睛】
本题考查了圆锥的计算,解题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般.
3、5
【分析】
设⊙O的半径为r,则OA=r,OD=r-2,先由垂径定理得到AD=BD=AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可.
【详解】
解:设⊙O的半径为r,则OC=OA=r,OE=OC-CE=r-2,
∵OC⊥AB,AB=8,
∴AE=BE=AB=4,
在Rt△OAE中,由勾股定理得:42+(r-2)2=r2,
解得:r=5,
即⊙O的半径长为5,
故答案为:5.
【点睛】
本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.
4、
【分析】
根据弓形的面积=扇形的面积-三角形的面积求解即可.
【详解】
解:如图,AC⊥OB,
∵圆心角为60°,OA=OB,
∴△OAB是等边三角形,
∴OC=OB=1,
∴AC=,
∴S△OAB=OB×AC=×2×=,
∵S扇形OAB==,
∴弓形(阴影部分)的面积= S扇形OAB- S△OAB=,
故答案为:.
【点睛】
本题考查扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法以及直角三角形的边角关系是正确解答的关键.
5、
【分析】
设BN与AC交于D,过M作MF⊥BA于F,过M作ME⊥BC于E,连接AM,先证明△EMC≌△FMA得ME=MF,从而可得∠CBD=45°,∠CDB=180°-∠BCA-∠CBD=90°,再在Rt△BCD、Rt△CDM中,分别求出BD和DM,即可得到答案.
【详解】
解:设BN与AC交于D,过M作MF⊥BA于F,过M作ME⊥BC于E,连接AM,如图:
∵△ABC绕着点C逆时针旋转60°,
∴∠ACM=60°,CA=CM,
∴△ACM是等边三角形,
∴CM=AM①,∠ACM=∠MAC=60°,
∵∠B=90°,AB=BC=1,
∴∠BCA=∠CAB=45°,AC==CM,
∴∠BCM=∠BCA+∠ACM=105°,∠BAM=∠CAB+∠MAC=105°,
∴∠ECM=∠MAF=75°②,
∵MF⊥BA,ME⊥BC,
∴∠E=∠F=90°③,
由①②③得△EMC≌△FMA,
∴ME=MF,
而MF⊥BA,ME⊥BC,
∴BM平分∠EBF,
∴∠CBD=45°,
∴∠CDB=180°-∠BCA-∠CBD=90°,
Rt△BCD中,BD=BC=,
Rt△CDM中,DM=CM =,
∴BM=BD+DM=,
故答案为:.
【点睛】
本题考查等腰三角形性质、等边三角形的性质及判定,解题的关键是证明∠CDB=90°.
三、解答题
1、
(1)相切,见解析
(2)
【分析】
(1)连接OC、OD、AC,OC交AF于点M,根据AG=CG,CD⊥AB,可得,从而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求证;
(2)先证明四边形CMFH为矩形,可得OC⊥AF,CM=HF=2,从而得到AM=FM,进而得到OM=BF=2,可得到CM=OM,进而得到 OC=4,AM垂直平分OC,可证得△AOC为等边三角形,即可求解.
(1)
解: CH与⊙O相切.
理由如下:如图,连接OC、OD、AC,OC交AF于点M,
∵AG=CG,
∴∠ACG=∠CAG,
∴,
∵CD⊥AB,
∴,
∴,
∴OC⊥AF,
∵AB为直径,
∴∠AFB=90°,
∵BH⊥CH,
∴CH∥AF,
∴OC⊥CH,
∵OC为半径,
∴CH为⊙O的切线;
(2)
解:由(1)得:BH⊥CH,OC⊥CH,
∴OC∥BH,
∵CH∥AF,
∴四边形CMFH为平行四边形,
∵OC⊥CH,
∴∠OCH=90°,
∴四边形CMFH为矩形,
∴OC⊥AF,CM=HF=2,
∴AM=FM,
∵点O为AB的中点,
∴OM=BF=2,
∴CM=OM,
∴OC=4,AM垂直平分OC,
∴AC=AO,
而AO=OC,
∴AC=OC=OA,,
∴△AOC为等边三角形,
∴∠AOC=60°,
∵,
∴∠AOD=∠AOC=60°,
∴∠COD=120°,
∴弧CD的长度为.
【点睛】
本题主要考查了圆的基本性质,垂径定理,切线的判定,等边三角形的判定和性质,熟练掌握相关知识点是解题的关键.
2、(1)A(-1,0),B(0,2);(2)点C的坐标(,);(3)①求点F的坐标(1,2);②点P的坐标(,)
【分析】
(1)令x=0,求得y值,得点B的坐标;令y=0,求得x的值,取较小的一个即求A点的坐标;
(2)设C的坐标为(x,-+x+2),根据AC=BC,得到,令t=-+x,解方程即可;
(3)①根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,根据B,E都在抛物线上,则B,E是对称点,从而确定点P在抛物线的对称轴上,点F在BE上,且BE∥x轴,点E(3,2),确定BE=3,根据旋转性质,得EF=BO=2,从而确定点F的坐标;
②根据BE=3,∠BPE=90°,PB=PE,确定P到BE的距离,即可写出点P的坐标.
【详解】
(1)令x=0,得y=2,
∴点B的坐标为B(0,2);
令y=0,得-+x+2=0,
解得
∵点A在x轴的负半轴;
∴A点的坐标(-1,0);
(2)设C的坐标为(x,-+x+2),
∵AC=BC,A(-1,0),B(0,2),
∴,
∵A(-1,0),B(0,2),
∴,
即,
设t=-+x,
∴,
∴,
∴,
∴,
整理,得,
解得
∵点C在y轴右侧的抛物线上,
∴,
此时y=,
∴点C的坐标(,);
(3)①如图,根据题意,得∠BPE=90°,PB=PE即点P在线段BE的垂直平分线上,
∵B,E都在抛物线上,
∴B,E是对称点,
∴点P在抛物线的对称轴上,点F在BE上,且BE∥x轴,
∵抛物线的对称轴为直线x=,B(0,2),
∴点E(3,2),BE=3,
∵EF=BO=2,
∴BF=1,
∴点F的坐标为(1,2);
②如图,设抛物线的对称轴与BE交于点M,交x轴与点N,
∵BE=3,
∴BM=,
∵∠BPE=90°,PB=PE,
∴PM=BM=,
∴PM=BM=,
∴PN=2-=,
∴点P的坐标为(,).
【点睛】
本题考查了抛物线与坐标轴的交点,旋转的性质,两点间的距离公式,一元二次方程的解法,换元法解方程,熟练掌握抛物线的对称性,灵活理解旋转的意义,熟练解一元二次方程是解题的关键.
3、(1)图见解析;(2)直径所对的圆周角是直角,切线的判定定理
【分析】
(1)根据所给的几何语言作出对应的图形即可;
(2)根据圆周角定理和切线的判定定理解答即可.
【详解】
解:(1)补全图形如图所示,直线AP即为所求作;
(2)证明:连接BA,
由作法可知,
∴点A在以OP为直径的圆上,
∴(直径所对的圆周角是直角),
∵OA是的半径,
∴直线PA与相切(切线的判定定理),
故答案为:直径所对的圆周角是直角,切线的判定定理.
【点睛】
本题考查基本作图-画圆、圆周角定理、切线的判定定理,熟知复杂作图是在基本作图的基础上进行作图,一般是结合几何图形的性质,因此熟练掌握基本图形的性质和切线的判定是解答的关键.
4、(1)见解析;(2)BC,90°,直径所对的圆周角是直角
【分析】
(1)过点O任作直线交圆于AB两点,再作AB的垂直平分线OM,直线MO交⊙O于点C,D;连结AC、BC即可;
(2)根据线段垂直平分线的判定与性质得出AC=BC,根据圆周角定理得出∠ACB=90°即可.
【详解】
(1)①作直径AB;
②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;
③作直线MO交⊙O于点C,D;
④连接AC,BC.
所以△ABC就是所求的等腰直角三角形.
(2)证明:连接MA,MB.
∵MA=MB,OA=OB,
∴MO是AB的垂直平分线.
∴AC=BC.
∵AB是直径,
∴∠ACB=90°(直径所对的圆周角是直角) .
∴△ABC是等腰直角三角形.
故答案为:BC,90°,直径所对的圆周角是直角.
【点睛】
本题考查尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质,掌握尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质是解题关键.
5、
(1)是等腰直角三角形,证明见解析
(2)周长最小值为。最大值为
【分析】
(1)连接BD,CE,根据SAS证明得BD=CE,根据三角形中位线性质可证明PM=PN;,进而可得结论;
(2)当BD最小时即点D在AB上,此时周长最小,当点D在BA的延长线上时,BD最大,此时周长最大,均为,求出BD的长即可解决问题.
(1)
连接BD,CE,如图,
∵,,,
∴
∴
∴
∴BD=CE,
∵点M,N,P分别是的中点
∴//,,PN//BD,PN=BD
∴PM=PN,
∵PN//BD
∴∠PNC=∠DBC
∴∠MPN=∠MPD+∠DPN=∠ECA+∠ACD+∠PCN+∠PNC=∠ACB+∠DBC+∠ABD=∠ACB+∠ABC=90°
∴
∴是等腰直角三角形;
(2)
由(1)知,是等腰直角三角形
∴
∴的周长为
∵
∴的周长为
当BD最小时即点D在AB上,此时周长最小,
∵AB=8,AD=3
∴BD的最小值为AB-AD=8-3=5
∴周长最小为
当点D在BA的延长线上时,BD最大,此时周长最大,
∴BD=AB+AD=8+3=11
∴周长最大为
【点睛】
此题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,三角形中位线定理的应用等知识,熟练掌握相关知识是解答本题的关键.
相关试卷
这是一份沪科版第24章 圆综合与测试巩固练习,共25页。
这是一份数学九年级下册第24章 圆综合与测试同步测试题,共32页。试卷主要包含了下列叙述正确的有个.,下列判断正确的个数有等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试同步达标检测题,共27页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。