搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练沪科版九年级数学下册第24章圆定向练习试卷(精选含答案)

    2021-2022学年度强化训练沪科版九年级数学下册第24章圆定向练习试卷(精选含答案)第1页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆定向练习试卷(精选含答案)第2页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆定向练习试卷(精选含答案)第3页
    还剩31页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第24章 圆综合与测试当堂检测题

    展开

    这是一份2020-2021学年第24章 圆综合与测试当堂检测题,共34页。
    沪科版九年级数学下册第24章圆定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列叙述正确的有(    )个.(1)随着的增大而增大;(2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是(3)斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;(4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;(5)以为三边长度的三角形,不是直角三角形.A.0 B.1 C.2 D.32、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是(      ).A.90° B.100° C.120° D.150°3、如图,ABBCCD分别与⊙O相切于EFG三点,且ABCDBO=3,CO=4,则OF的长为(  )A.5 B. C. D.4、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是(   A.  B. C.  D.5、如图,在△ABC中,∠CAB=64°,将△ABC在平面内绕点A旋转到△ABC′的位置,使CCAB,则旋转角的度数为(    A.64° B.52° C.42° D.36°6、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是(  )A.1cm B.2cm C.2cm D.4cm7、如图,ABCD是⊙O的弦,且,若,则的度数为(    A.30° B.40° C.45° D.60°8、如图,ABC是正方形网格中的三个格点,则是(    A.优弧 B.劣弧 C.半圆 D.无法判断9、下列图形中,既是中心对称图形也是轴对称图形的是(    A. B. C. D.10、如图,AB 为⊙O 的直径,弦 CDAB,垂足为点 E,若 ⊙O的半径为5,CD=8,则AE的长为(   A.3 B.2 C.1 D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在⊙O中,AB=10,BC=12,D上一点,CD=5,则AD的长为______.2、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为______.(结果保留π3、AB的直径,点C上,,点P在线段OB上运动.设,则x的取值范围是________.4、已知⊙A的半径为5,圆心A(4,3),坐标原点O与⊙A的位置关系是______.5、如图,点C是半圆上一动点,以BC为边作正方形BCDE(使在正方形内),连OE,若AB=4cm,则OE的最大值为_____cm.三、解答题(5小题,每小题10分,共计50分)1、如图,的直径,的切线,弦,直线的延长线于点,连接求证:(1)(2)2、对于平面直角坐标系xOy中的图形M和点P给出如下定义:Q为图形M上任意一点,若PQ两点间距离的最大值和最小值都存在,且最大值是最小值的2倍,则称点P为图形M的“二分点”.已知点N(3,0),A(1,0),(1)①在点ABC中,线段ON的“二分点”是______;②点Da,0),若点C为线段OD的“二分点”,求a的取值范围;(2)以点O为圆心,r为半径画圆,若线段AN上存在的“二分点”,直接写出r的取值范围.3、如图,AB为⊙O的直径,点C在⊙O上,点PBA的延长线上,连接BCPC.若AB = 6,的长为π,BC = PC.求证:直线PC与⊙O相切.4、请阅读下列材料,并完成相应的任务:阿基米德是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.阿拉伯Al-Binmi (973-1050 年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Binmi详本出版了俄文版《阿基米德全集》.第一题就是阿基米德折弦定理.阿基米德折弦定理:如图1,的两条弦(即折线是圆的一条折弦),的中点,则从所作垂线的垂足是折弦的中点,即下面是运用“截长法”证明的部分证明过程.证明:如图2,在上截取,连接的中点,任务:(1)请按照上面的证明思路,写出该证明部分;(2)填空:如图3,已知等边内接于上一点,于点,则的周长是_________.5、阅读下列材料,完成相应任务:如图①,是⊙O的内接三角形,是⊙O的直径,平分交⊙O于点,连接,过点作⊙O的切线,交的延长线于点.则.下面是证明的部分过程:证明:如图②,连接是⊙O的直径,①________.(1)为⊙O的切线,,(2)由(1)(2)得,②________________.平分③________,任务:(1)请按照上面的证明思路,补全证明过程:①________,②________,③________;(2)若,求的长. -参考答案-一、单选题1、D【分析】根据反比例函数的性质,得当或者时,随着的增大而增大;根据直径所对圆周角为直角的性质,得斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解.【详解】或者时,随着的增大而增大,故(1)不正确;如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是;,故(2)正确;∵圆的直径所对的圆周角为直角∴斜边为的直角三角形顶点A的轨迹是以中点为圆心,长为直径的圆,故(3)正确;三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确;∴以为三边长度的三角形,是直角三角形,故(5)错误;故选:D.【点睛】本题考查了三角形、垂直平分线、反比例函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解.2、D【分析】绕点逆时针旋转,根据旋转的性质得,则为等边三角形,得到,在中,,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数.【详解】解:为等边三角形,可将绕点逆时针旋转如图,连接为等边三角形,中,为直角三角形,且故选:D.【点睛】本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.3、D【分析】连接OFOEOG,根据切线的性质及角平分线的判定可得OB平分OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.【详解】解:连接OFOEOGAB、BC、CD分别与相切,,且OB平分OC平分故选:D.【点睛】题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.4、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.【详解】解:A、不是中心对称图形,故A错误.B、不是中心对称图形,故B错误.C、是中心对称图形,故C正确.D、不是中心对称图形,故D错误.故选:C.【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.5、B【分析】先根据平行线的性质得∠ACC′=∠CAB=64°,再根据旋转的性质得∠CAC′等于旋转角,AC=AC′,则利用等腰三角形的性质得∠ACC′=∠ACC=64°,然后根据三角形内角和定理可计算出∠CAC′的度数,从而得到旋转角的度数.【详解】解:∵CC′∥AB∴∠ACC′=∠CAB=64°∵△ABC在平面内绕点A旋转到△ABC′的位置,∴∠CAC′等于旋转角,AC=AC′,∴∠ACC′=∠ACC=64°,∴∠CAC′=180°-∠ACC′-∠ACC=180°-2×64°=52°,∴旋转角为52°.故选:B【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.6、D【分析】根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.【详解】解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过 设半径为r,即OA=OB=AB=rOM=OA•sin∠OAB=∵圆O的内接正六边形的面积为(cm2), ∴△AOB的面积为(cm2), 解得r=4, 故选:D.【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.7、B【分析】由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.【详解】解:∵故选:B.【点睛】题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.8、B【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.【详解】解;如图,分别连接ABACBC,取任意两条线段的中垂线相交,交点就是圆心.故选:B.【点睛】本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.9、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意.故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.10、B【分析】连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度.【详解】解:连接OC,如图AB 为⊙O 的直径,CDAB,垂足为点 ECD=8,故选:B【点睛】本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出二、填空题1、3【分析】AAEBCE,过CCFADF,根据圆周角定理可得∠ACB=∠B=∠DAB=AC=10,再由等腰三角形的性质可知BE=CE=6,根据相似三角形的判定证明△ABE∽△CDF,由相似三角形的性质和勾股定理分别求得AEDFCF AF即可求解.【详解】解:过AAEBCE,过CCFADF,则∠AEB=∠CFD=90°, AB=10,∴∠ACB=∠B=∠DAB=AC=10,AEBCBC=12,BE=CE=6,  ∵∠B=∠D,∠AEB=∠CFD=90°,∴△ABE∽△CDFAB=10,CD=5,BE=6,AE=8,解得:DF=3,CF=4,RtAFC中,∠AFC=90°,AC=10,CF=4,AD=DF+AF=3+2故答案为:3+2【点睛】本题考查圆周角定理、等腰三角形的性质、相似三角形的判定与性质、勾股定理,熟练掌握圆周角定理和相似三角形的判定与性质是解答的关键.2、【分析】先求出ABC坐标,再证明三角形BOC是等边三角形,最后根据扇形面积公式计算即可.【详解】CCDOAD∵一次函数的图象与x轴交于点A,与y轴交于点B∴当时,B点坐标为(0,1)时,A点坐标为∵作的外接圆∴线段AB中点C的坐标为,∴三角形BOC是等边三角形C的坐标为故答案为:【点睛】本题主要考查了一次函数的综合运用,求扇形面积.用已知点的坐标表示相应的线段是解题的关键.3、【分析】分别求出当点P与点O重合时,当点P与点B重合时x的值,即可得到取值范围.【详解】解:当点P与点O重合时,OA=OC,即当点P与点B重合时,AB的直径,x的取值范围是【点睛】此题考查了同圆中半径相等的性质,直径所对的圆周角是直角的性质,正确理解点P的运动位置是解题的关键.4、在⊙A【分析】先根据两点间的距离公式计算出OA,然后根据点与圆的位置关系的判定方法判断点O与⊙A的位置关系.【详解】解:∵点A的坐标为(4,3),OA==5,∵半径为5,OA=r∴点O在⊙A上.故答案为:在⊙A上.【点睛】本题考查了点与圆的位置关系:点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,当点P在圆外⇔dr;当点P在圆上⇔d=r;当点P在圆内⇔dr5、【分析】如图,连接ODOEOC,设DO与⊙O交于点M,连接CMBM,通过△OCD≌△OBESAS),可得OEOD,通过旋转观察如图可知当DOAB时,DO最长,此时OE最长,设DO与⊙O交于点M,连接CM,先证明△MED≌△MEB,得MDBM.再利用勾股定理计算即可.【详解】解:如图,连接ODOEOC,设DO与⊙O交于点M,连接CMBM∵四边形BCDE是正方形,∴∠BCD=∠CBE=90°,CDBCBEDEOBOC∴∠OCB=∠OBC∴∠BCD+∠OCB=∠CBE+∠OBC,即∠OCD=∠OBE∴△OCD≌△OBESAS),OEOD根据旋转的性质,观察图形可知当DOAB时,DO最长,即OE最长,∵∠MCBMOB×90°=45°,∴∠DCM=∠BCM=45°,∵四边形BCDE是正方形,CME共线,∠DEM=∠BEM在△EMD和△EMB中,∴△MED≌△MEBSAS),DMBM=2(cm),OD的最大值=2+2,即OE的最大值=2+2;故答案为:(2+2)cm.【点睛】本题考查了正方形的性质、全等三角形的判定与性质,圆周角定理等知识,解题的关键是OD取得最大值时的位置,学会通过特殊位置探究得出结论.三、解答题1、(1)见解析;(2)见解析【分析】(1)连接,根据,可证.从而可得,即可证明,故(2)证明,可得,即可证明【详解】证明:(1)连接,如图:的直径,的切线,中,的直径,,即  ,即(2)由(1)知:又∵  【点睛】本题考查圆中的相似三角形判定与性质,涉及三角形全等的判定与性质,解题的关键是证明,从而得到2、(1)①BC;②;(2)【分析】(1)①分别找出点ABC到线段ON的最小值和最大值,是否满足“二分点”定义即可;②对a的取值分情况讨论:,根据“二分点”的定义可求解;(2)设线段AN上存在的“二分点”为,对的取值分情况讨论,根据“二分点”的定义可求解.【详解】(1)①∵点AON上,故最小值为0,不符合题意,BON的最小值为,最大值为∴点B是线段ON的“二分点”,CON的最小值为1,最大值为∴点C是线段ON的“二分点”,故答案为:BC②若时,如图所示:COD的最小值为,最大值为∵点C为线段OD的“二分点”,解得:,如图所示:COD的最小值为1,最大值为,满足题意;时,如图所示:COD的最小值为1,最大值为∵点C为线段OD的“二分点”,解得:(舍);时,如图所示:COD的最小值为,最大值为∵点C为线段OD的“二分点”,解得:(舍),综上所得:a的取值范围为(2)如图所示,设线段AN上存在的“二分点”为时,最小值为:,最大值为:,即时,最小值为:,最大值为:∴∴,即不存在;时,最小值为:,最大值为:,即不存在;时,最小值为:,最大值为:,即综上所述,r的取值范围为【点睛】本题考查坐标上的两点距离,解一元二次方程解不等式以及点到圆的距离求最值,根据题目所给条件,掌握“二分点”的定义是解题的关键.3、见详解【分析】连接OC,由题意易得∠AOC=60°,则有∠B=∠OCB=30°,然后可得∠P=∠B=30°,进而可得∠OCP=90°,最后问题可求证.【详解】证明:连接OC,如图所示:的长为π,AB=6,OC=OA=3,OB=OC∴∠B=∠OCB=30°,BC=PC∴∠P=∠B=30°,∴∠POC+∠P=90°,即∠OCP=90°,OC是圆O的半径,∴直线PC与⊙O相切.【点睛】本题主要考查切线的判定定理,熟练掌握切线的判定定理是解题的关键.4、(1)证明见解析;(2)【分析】(1)首先证明,进而得出,再利用等腰三角形的性质得出,即可得出答案;(2)首先证明,进而得出,以及,进而求出的长即可得出答案.(1)证明:如图2,在上截取,连接的中点,(2)解:如图3,截取,连接由题意可得:,则 故答案为:【点睛】此题主要考查了圆与三角形综合,涉及了圆周角定理、全等三角形的判定与性质以及等腰三角形以及等边三角形的性质,正确作出辅助线利用全等三角形的判定与性质解题是解题关键.5、(1);(2)【分析】(1)由是⊙O的直径,得到ODB.再由为⊙O的切线,得到,即可推出∠ODA=∠BDE,由角平分线的定义可得,由,得到,即可证明(2)在直角△ODE中利用勾股定理求解即可.【详解】解:(1)如图②,连接是⊙O的直径,ODB.(1)为⊙O的切线,,(2)由(1)(2)得,∠ODA=∠BDE平分ODA故答案为:① ,② ,③ (2)的切线,中,【点睛】本题主要考查了切线的性质,角平分线的定义,等腰三角形的性质,直径所对的圆周角是直角,勾股定理等等,解题的关键在于能够熟练掌握切线的性质. 

    相关试卷

    数学九年级下册第24章 圆综合与测试随堂练习题:

    这是一份数学九年级下册第24章 圆综合与测试随堂练习题,共39页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试课时作业:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时作业,共33页。

    初中数学沪科版九年级下册第24章 圆综合与测试课后复习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后复习题,共28页。试卷主要包含了如图,是的直径,等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map