【历年真题】2022年石家庄晋州市中考数学备考模拟练习 (B)卷(含答案及解析)
展开
这是一份【历年真题】2022年石家庄晋州市中考数学备考模拟练习 (B)卷(含答案及解析),共24页。试卷主要包含了下列解方程的变形过程正确的是,的相反数是等内容,欢迎下载使用。
2022年石家庄晋州市中考数学备考模拟练习 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图是三阶幻方的一部分,其每行、每列、每条对角线上三个数字之和都相等,则对于这个幻方,下列说法错误的是( )A.每条对角线上三个数字之和等于B.三个空白方格中的数字之和等于C.是这九个数字中最大的数D.这九个数字之和等于2、下列各数中,是无理数的是( )A. B. C. D.3、如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是 A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D4、如图,是的边上的中线,,则的取值范围为( )A. B. C. D.5、已知空气的单位体积质量为克/厘米3,将用小数表示为( )A. B. C. D.6、下列解方程的变形过程正确的是( )A.由移项得:B.由移项得:C.由去分母得:D.由去括号得:7、如果零上2℃记作+2℃,那么零下3℃记作( )A.-3℃ B.-2℃ C.+3℃ D.+2℃8、下列命题与它的逆命题都为真命题的是( )A.已知非零实数x,如果为分式,那么它的倒数也是分式.B.如果x的相反数为7,那么x为-7.C.如果一个数能被8整除,那么这个数也能被4整除.D.如果两个数的和是偶数,那么它们都是偶数.9、的相反数是( )A. B. C. D.10、把 写成省略括号后的算式为 ( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是__.2、如图,半圆O的直径AE=4,点B,C,D均在半圆上.若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为________.3、以下说法:①两点确定一条直线;②两点之间直线最短;③若,则;④若a,b互为相反数,则a,b的商必定等于.其中正确的是_________.(请填序号)4、若,则________.5、已知,那么它的余角是________,它的补角是________.三、解答题(5小题,每小题10分,共计50分)1、如图,在矩形ABCD中,,,E是CD边上的一点,,M是BC边的中点,动点P从点A出发.沿边AB以的速度向终点B运动,过点P作于点H,连接EP.设动点P的运动时间是.(1)当t为何值时,?(2)设的面积为,写出与之间的函数关系式.(3)当EP平分四边形PMEH的面积时,求t的值.(4)是否存在时刻t,使得点B关于PE的对称点落在线段AE上?若存在,求出t的值;若不存在,说明理由.2、已知关于x的两个多项式A=x2-8x+3.B=ax-b,且整式A+B中不含一次项和常数项.(1)求a,b的值;(2)如图是去年2021年3月份的月历.用带阴影的十字方框覆盖其中5个数字,例如:1,7,8,9,15.现在移动十字方框使其履盖的5个数之和等于9a+6b,则此时十字方框正中心的数是 _____ .3、计算(1);(2);(3);(4)解方程:.(5)先化简,再求值:已知,其中,.4、我们将平面直角坐标系中的图形D和点P给出如下定义:如果将图形D绕点P顺时针旋转90°得到图形,那么图形称为图形D关于点P的“垂直图形”.已知点A的坐标为,点B的坐标为(0,1),关于原点O的“垂直图形”记为,点A、B的对应点分别为点.(1)请写出:点的坐标为____________;点的坐标为____________;(2)请求出经过点A、B、的二次函数解析式;(3)请直接写出经过点A、B、的抛物线的表达式为____________.5、在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”.例如点(5,6)的“关联点”为点(5,6),点(-5,6)的“关联点”为点(-5,-6).(1)在点E(0,0),F(2,5),G(-1,-1),H(-3,5)中, 的“关联点”在函数y=2x+1的图象上;(2)如果一次函数y=x+3图象上点M的“关联点”是N(m,2),求点M的坐标;(3)如果点P在函数y=-x2+4(-2<x≤a)的图象上,其“关联点”Q的纵坐标y′的取值范围是-4<y′≤4,求实数a的取值范围. -参考答案-一、单选题1、B【分析】根据每行、每列、每条对角线上三个数字之和都相等,则由第1列三个已知数5+4+9=18可知每行、每列、每条对角线上三个数字之和为18,于是可分别求出未知的各数,从而对四个选项进行判断.【详解】∵每行、每列、每条对角线上三个数字之和都相等,而第1列:5+4+9=18,于是有5+b+3=18,9+a+3=18,得出a=6,b=10,从而可求出三个空格处的数为2、7、8,所以答案A、C、D正确,而2+7+8=17≠18,∴答案B错误,故选B.【点睛】本题考查的是数字推理问题,抓住条件利用一元一次方程进行逐一求解是本题的突破口.2、C【分析】根据无理数的概念:无限不循环小数,由此可进行排除选项.【详解】解:A.是分数,是有理数,选项不符合题意;B.,是整数,是有理数,选项不符合题意;C.是无理数,选项符合题意;D.是整数,是有理数,选项不符合题意.故选C.【点睛】本题主要考查无理数的概念,熟练掌握无理数的概念是解题的关键.3、B【分析】先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=∠BOD,从而可对各选项进行判断.【详解】解:∵直径CD⊥弦AB,∴弧AD =弧BD,∴∠C=∠BOD.故选B.【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4、C【分析】延长至点E,使,连接,证明,可得,然后运用三角形三边关系可得结果.【详解】如图,延长至点E,使,连接.∵为的边上的中线,∴,在和中,∴,∴.在中,,即,∴,故选:C.【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,根据中点倍长法构造全等三角形是解题的关键.5、B【分析】指数是-3,说明数字1前面有3个0【详解】指数是-3,说明数字1前面有3个0,故选B【点睛】在科学记数法中,n等于原数中第一个非零数字前面所有零的个数(包括小数点前面的零)6、D【分析】对于本题,我们可以根据解方程式的变形过程逐项去检查,必须符合变形规则,移项要变号.【详解】解析:A.由移项得:,故A错误;B.由移项得:,故B错误;C.由去分母得:,故C错误;D.由去括号得: 故D正确.故选:D.【点睛】本题主要考查了解一元一次方程变形化简求值,解题关键是:必须熟练运用移项法则.7、A【分析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.故选A.8、B【分析】先判断原命题的真假,然后分别写出各命题的逆命题,再判断逆命题的真假.【详解】解:A. 的倒数是,不是分式,原命题是假命题,不符合题意;B. 如果x的相反数为7,那么x为-7是真命题,逆命题为:如果x为-7,那么x的相反数为7,是真命题,符合题意;C. 如果一个数能被8整除,那么这个数也能被4整除是真命题,逆命题为:如果一个数能被4整除,那么这个数也能被8整除,是假命题,不符合题意;D.因为两个奇数的和也是偶数,所以原命题是假命题,不符合题意;故选B.【点睛】本题主要考查命题的逆命题和命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9、A【分析】直接利用特殊角的三角函数值得出cos45°的值,再利用互为相反数的定义得出答案.【详解】cos45°= 的相反数是﹣.故选A.【点睛】本题主要考查了特殊角的三角函数值以及相反数,正确记忆特殊角的三角函数值是解题的关键.10、D【分析】先把算式写成统一加号和的形式,再写成省略括号的算式即可.【详解】把统一加号和,再把写成省略括号后的算式为 5-3+1-5.故选:D.【点睛】本题考查有理数加减法统一加法的问题,掌握加减法运算的法则,会用减法法则把减法装化为加法,会写省略括号的算式是解题关键.二、填空题1、m=4.【详解】分析:若一元二次方程有实根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.还要注意二次项系数不为0.详解:∵关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,∴△=4﹣8(m﹣5)≥0,且m﹣5≠0,解得m≤5.5,且m≠5,则m的最大整数解是m=4.故答案为m=4.点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根.2、π【分析】根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解.【详解】如图,连接CO,∵AB=BC,CD=DE,∴∠BOC+∠COD=∠AOB+∠DOE=90°,∵AE=4,∴AO=2,∴S阴影==π.【点睛】本题考查了扇形的面积计算及圆心角、弧之间的关系.解答本题的关键是得出阴影部分的面积等于扇形BOD的面积.3、①【分析】分别利用直线的性质以及线段的性质和相反数、绝对值的性质分别分析得出答案.【详解】①两点确定一条直线,正确;②两点之间直线最短,错误,应为两点之间线段最短;③若,则,故③错误;④若a,b互为相反数,则a,b的商等于(a,b不等于0),故④错误.故答案为:①.【点睛】此题主要考查了直线的性质以及线段的性质和相反数、绝对值,正确掌握相关定义是解题关键.4、【分析】根据条件|m|=m+1进行分析,m的取值可分三种条件讨论,m为正数,m为负数,m为0,讨论可得m的值,代入计算即可.【详解】解:根据题意,可得m的取值有三种,分别是:当m>0时,则可转换为m=m+1,此种情况不成立.当m=0时,则可转换为0=0+1,此种情况不成立.当m<0时,则可转换为-m=m+1,解得,m=.将m的值代入,则可得(4m+1)2011=[4×()+1]2011=-1.故答案为:-1.【点睛】本题考查了含绝对值符号的一元一次方程和代数式的求值.解题时,要注意采用分类讨论的数学思想.5、 【分析】根据余角、补角的性质即可求解.【详解】解:,故答案为,.【点睛】此题考查了补角和余角的性质,理解余角和补角的性质是解题的关键.三、解答题1、(1)t=;(2)y=−t2+6t(0<t<14);(3)t=;(4)【分析】(1)通过证明△CEM∽△BMP,可得,即可求解;(2)利用锐角三角函数分别求出EH,HP,由三角形面积公式可求解;(3)由S△EHP=S△EMP,列出等式可求解;(4)由对称性可得∠AEP=∠BEP,由角平分线的性质可得PF=PH,由面积关系可求解.【详解】解:(1)∵四边形ABCD是矩形∴AB=CD,BC=AD∵M是BC边的中点,∴CM=BM=6cm,∵,DE=9cm,∴EC=5cm,∵PM⊥EM,∴∠PMB+∠CME=90°,又∵∠BMP+∠BPM=90°,∴∠BPM=∠EMC,又∵∠B=∠C=90°,∴△CEM∽△BMP,∴,∴,∴t=;(2)∵四边形ABCD是矩形,∴∠D=90°,∴AE2=AD2+DE2,∵AD=12cm,DE=9cm,∴AE=cm,∵ABCD,∴∠DEA=∠EAB,∴sin∠DEA=sin∠EAB,∴,∴,∴HP=t,∴AH==t,∴HE=15−t,∵S△EHP=×EH×HP,∴y=(15−t)×t=−t2+6t(0<t<14);(3)∵EP平分四边形PMEH的面积,∴S△EHP=S△EMP,∴(15−t)×t=×12×(5+14−t)−×6×(14−t)−×6×5,解得:t1=,t2=∵0<t<14,∴t=;(4)如图2,连接BE,过点P作PF⊥BE于F,∵点B关于PE的对称点,落在线段AE上,∴∠AEP=∠BEP,又∵PH⊥AE,PF⊥BE,∴PF=PH=t,∵EC=5cm,BC=12cm,∴BE=cm,∵S△ABE=S△AEP+S△BEP,∴×14×12=×(15+13)×t,∴t=.【点睛】本题是四边形综合题,考查了矩形的性质,相似三角形的判定和性质,勾股定理,轴对称的性质,锐角三角函数等知识,利用面积关系列出等式是本题的关键.2、(1)a=8,b=3;(2)18【分析】(1)把A与B代入A+B中,去括号合并后由结果不含一次项与常数项求出a与b的值即可;(2)设十字方框正中心的数是m,根据题意列出方程,解方程即可.【详解】解:(1)∵A=x2-8x+3.B=ax-b,∴A+B=x2-8x+3+ ax-b=x2+(-8+a)x-b+3,由结果中不含一次项和常数项,得到-8+a=0,-b+3=0,解得:a=8,b=3;(2)设十字方框正中心的数是m,则它上面的数为m-7,它下面的数为m+7,它左面的数为m-1,它右面的数为m+1,列方程得,,∵a=8,b=3;∴,解得,;故答案为:18【点睛】本题考查了整式的运算和一元一次方程的应用,解题关键是明确不含某项是只该项的系数为0,找出日历中数字关系,列出方程.3、(1)(2)(3)(4)(5);【分析】(1)(2)(3)根据有理数的混合运算进求解即可;(4)根据移项合并同类项解一元一次方程即可;(4)先去括号再合并同类项,再将的值代入求解即可.(1)(2)(3)(4)解得(5)当,时,原式【点睛】本题考查了有理数的混合运算,解一元一次方程,整式加减的化简求值,正确的计算是解题的关键.4、(1)(1,2);(1,0)(2)(3)【分析】(1)根据旋转的性质得出,;(2)利用待定系数法进行求解解析式即可;(3)利用待定系数法求解解析式即可,或利用与(2)中对对称轴相同,开口方向相反可以快速得出答案.(1)解:根据题意作下图:根据旋转的性质得:,,,,故答案是:(1,2);(1,0);(2)解:设过点A、B、的二次函数解析式为:,将点分别代入中得:,解得:,;(3)解:设过点A、B、的二次函数解析式为:,将点分别代入中得:,解得:,;故答案为:.【点睛】本题考查了旋转的性质,利用待定系数法求解解析式,解题的关键是掌握待定系数法求解解析式.5、(1)F、H(2)点M(-5,-2)(3)【分析】(1)点E(0,0)的“关联点”是(0,0),点F(2,5)的“关联点”是(2,5),点G(-1,-1)的“关联点”是(-1,1),点H(-3,5)的“关联点”是(-3,-5),将点的坐标代入函数y=2x+1,看是否在函数图象上,即可求解;(2)当m≥0时,点M(m,2),则2=m+3;当m<0时,点M(m,-2),则﹣2=m+3,解方程即可求解;(3)如图为“关联点”函数图象:从函数图象看,“关联点”Q的纵坐标y'的取值范围是-4<y'≤4,而-2<x≤a,函数图象只需要找到最大值(直线y=4)与最小值(直线y=-4)直线x=a从大于等于0开始运动,直到与y=-4有交点结束.都符合要求-4<y'≤4,只要求出关键点即可求解.(1)解:由题意新定义知:点E(0,0)的“关联点”是(0,0),点F(2,5)的“关联点”是(2,5),点G(-1,-1)的“关联点”是(-1,1),点H(-3,5)的“关联点”是(-3,-5),将点的坐标代入函数y=2x+1,得到:F(2,5)和H(-3,-5)在函数y=2x+1图象上;(2)解:当m≥0时,点M(m,2),则2=m+3,解得:m=-1(舍去);当m<0时,点M(m,-2),-2=m+3,解得:m=-5,∴点M(-5,-2);(3)解:如下图所示为“关联点”函数图象:从函数图象看,“关联点”Q的纵坐标y'的取值范围是-4<y'≤4,而-2<x≤a,函数图象只需要找到最大值(直线y=4)与最小值(直线y=-4)直线x=a从大于等于0开始运动,直到与y=-4有交点结束,都符合要求,∴-4=-a2+4,解得:(舍去负值),观察图象可知满足条件的a的取值范围为:.【点睛】本题考查二次函数的性质,一次函数的性质等知识,解题的关键是理解题意,属于创新题目,读懂题意是解决本类题的关键.
相关试卷
这是一份【真题汇编】2022年河北石家庄市晋州市中考数学备考模拟练习 (B)卷(含详解),共21页。试卷主要包含了把 写成省略括号后的算式为,方程的解为,下列等式成立的是,是-2的 .等内容,欢迎下载使用。
这是一份【历年真题】2022年石家庄晋州市中考数学真题模拟测评 (A)卷(含详解),共19页。试卷主要包含了把分式化简的正确结果为,下列解方程的变形过程正确的是等内容,欢迎下载使用。
这是一份【历年真题】2022年石家庄桥西区中考数学备考模拟练习 (B)卷(含答案解析),共24页。试卷主要包含了计算3.14-的结果为 .,已知,,,则,下列各数中,是无理数的是,分式方程有增根,则m为等内容,欢迎下载使用。