【历年真题】2022年河北省邯郸市中考数学第一次模拟试题(含详解)
展开2022年河北省邯郸市中考数学第一次模拟试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是
A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D
2、若把分式中的x和y都扩大10倍,那么分式的值( )
A.扩大10倍 B.不变 C.缩小10倍 D.缩小20倍
3、如图,在数轴上有三个点A、B、C,分别表示数,,5,现在点C不动,点A以每秒2个单位长度向点C运动,同时点B以每秒个单位长度向点C运动,则先到达点C的点为( )
A.点A B.点B C.同时到达 D.无法确定
4、如果是一元二次方程的一个根,那么常数是( )
A.2 B.-2 C.4 D.-4
5、邢台市某天的最高气温是17℃,最低气温是-2℃,那么当天的温差是( ).
A.19℃ B.-19 ℃ C.15℃ D.-15℃
6、如果零上2℃记作+2℃,那么零下3℃记作( )
A.-3℃ B.-2℃ C.+3℃ D.+2℃
7、关于x,y的方程组的解满足x+y<6,则m的最小整数值是( )
A.-1 B.0 C.1 D.2
8、已知空气的单位体积质量为克/厘米3,将用小数表示为( )
A. B. C. D.
9、下列运算中,正确的是( )
A. B. C. D.
10、如图,,点B和点C是对应顶点,,记,当时,与之间的数量关系为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,圆心角∠AOB=20°,将 旋转n°得到,则的度数是______度.
2、已知,则a=_____, b=________.
3、若一扇窗户打开后,用窗钩将其固定,主要运用的几何原理是_________.
4、若不等式组的解集是-1<x<1,则(a+b)2019=________.
5、如图,半圆O的直径AE=4,点B,C,D均在半圆上.若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为________.
三、解答题(5小题,每小题10分,共计50分)
1、为鼓励居民节约用水,昆明市主城区居民生活用水推行每月阶梯水费收费制度,具体执行方案如下(注:自2021年1月4日起执行):
类别 | 每户每月用水量(立方米) | 阶梯价格(元/立方米) |
第一阶梯 | 小于或等于12.5的部分 | 4.2 |
第二阶梯 | 大于12.5且小于或等于17.5的部分 | 5.8 |
第三阶梯 | 大于17.5的部分 | 10.6 |
(1)一户居民二月份用水8立方米,则需缴水费______元;
(2)某用户三月份缴水费67元,则该用户三月份所用水量为多少立方米?
(3)某户居民五、六月份共用水29立方米,缴纳水费129元,已知该用户六月份用水量大于五月份,且五、六月份的用水量均小于17.5立方米.求该户居民五、六月份分别用水多少立方米?
2、已知抛物线与轴负半轴交于点,与轴交于点,直线经过点和点.
(1)求直线的函数表达式;
(2)若点和点分别是抛物线和直线上的点,且,判断和的大小,并说明理由.
3、已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长(单位长度),慢车长(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且与互为相反数.
(1)求此时刻快车头A与慢车头C之间相距多少单位长度?
(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头A和C相距8个单位长度.
(3)此时在快车AB上有一位爱动脑筋的六年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A,C的距离和加上到两列火车尾B,D的距离和是一个不变的值(即为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值:若不正确,请说明理由.
4、如图,在数轴上记原点为点O,已知点A表示数a,点B表示数b,且a,b满足,我们把数轴上两点之间的距离,用表示两点的大写字母表示,如:点A与点B之间的距离记作AB.
(1)______,______;
(2)若动点P,Q分别从A,B同时出发向右运动,点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,当点P和点Q重合时,P,Q两点停止运动.当点P到达原点O时,动点R从原点O出发,以每秒3个单位长度的速度也向右运动,当点R追上点Q后立即返回,以同样的速度向点P运动,遇到点P后再立即返,以同样的速度向点Q运动,如此往返,直到点P、Q停止运动时,点R也停止运动,求在此过程中点R行驶的总路程,以及点R停留的最后位置在数轴上所对应的有理数;
(3)动点M从A出发,以每秒1个单位的速度沿数轴在A,B之间运动,同时动点N从B出发,以每秒2个单位的速度沿数轴在A,B之间往返运动,当点M运动到B时,M和N两点停止运动.设运动时间为t秒,是否存在t值,使得?若存在,请直接写出t值;若不存在,请说明理由.
5、鱼卷是泉州十大名小吃之一,不但本地人喜欢,还深受外来游客的赞赏.小张从事鱼卷生产和批发多年,有着不少来自零售商和酒店的客户,当地的习俗是农历正月没有生产鱼卷,客户正月所需要的鱼卷都会在农历十二月底进行一次性采购.2018年年底小张的“熟客”们共向小张采购了5000箱鱼卷,到2020年底“熟客”们采购了7200箱.
(1)求小张的“熟客"们这两年向小张采购鱼卷的年平均增长率;
(2)2020年底小张“熟客”们采订购鱼卷的数量占小张年底总销售量的,由于鱼卷受到游客们的青睐,小张做了一份市场调查,决定今年年底是否在网上出售鱼卷,若没有在网上出售鱼卷,则按去年的价格出售,每箱利润为15元,预计销售量与去年持平;若计划在网上出售鱼卷,则需把每箱售价下4至5元,且每下调1元销售量可增加1000箱,求小张在今年年底能获得的最大利润是多少元?
-参考答案-
一、单选题
1、B
【分析】
先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=∠BOD,从而可对各选项进行判断.
【详解】
解:∵直径CD⊥弦AB,
∴弧AD =弧BD,
∴∠C=∠BOD.
故选B.
【点睛】
本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
2、B
【分析】
把x和y都扩大10倍,根据分式的性质进行计算,可得答案.
【详解】
解:分式中的x和y都扩大10倍可得:,
∴分式的值不变,
故选B.
【点睛】
本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.
3、A
【分析】
先分别计算出点A与点C之间的距离为10,点B与点C之间的距离为8.5,再分别计算出所用的时间.
【详解】
解:点A与点C之间的距离为:,
点B与点C之间的距离为:,
点A以每秒2个单位长度向点C运动,所用时间为(秒);
同时点B以每秒个单位长度向点C运动,所用时间为(秒);
故先到达点C的点为点A,
故选:A.
【点睛】
本题考查了数轴,解决本题的关键是计算出点A与点C,点B与点C之间的距离.
4、C
【分析】
一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
【详解】
把x=2代入方程x2=c可得:c=4.
故选C.
【点睛】
本题考查的是一元二次方程的根即方程的解的定义.
5、A
【分析】
用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.
【详解】
解:17-(-2)
=17+2
=19℃.
故选A.
【点睛】
本题考查有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.
6、A
【分析】
一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
【详解】
∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.
故选A.
7、B
【解析】
【分析】
先解方程组,得出x,y的值,再把它代入x+y<6即可得出m的范围.由此即可得出结论.
【详解】
解方程组,得:.
∵x+y<6,∴5m﹣2+(4﹣9m)<6,解得:m>﹣1,∴m的最小整数值是0.
故选B.
【点睛】
本题考查了二元一次方程组的解以及求一元一次不等式的整数解,解答此题的关键是解方程组.
8、B
【分析】
指数是-3,说明数字1前面有3个0
【详解】
指数是-3,说明数字1前面有3个0,
故选B
【点睛】
在科学记数法中,n等于原数中第一个非零数字前面所有零的个数(包括小数点前面的零)
9、A
【分析】
根据 “幂的乘方”“同底数幂乘法”“合并同类项”“积的乘方”的运算法则,即可选出正确选项.
【详解】
A选项,幂的乘方,底数不变,指数相乘,,所以A选项正确.
B选项,同底数幂相乘,底数不变,指数相加,,所以B选项错误.
C选项,合并同类项,字母和字母指数不变,系数相加,,所以C选项错误.
D选项,积的乘方,积中每一个因式分别乘方,,所以D选项错误.
故选A
【点睛】
整式计算基础题型,掌握运算法则,熟练运用.
10、B
【分析】
根据全等三角形对应边相等可得AB=AC,全等三角形对应角相等可得∠BAO=∠CAD,然后求出∠BAC=α,再根据等腰三角形两底角相等求出∠ABC,然后根据两直线平行,同旁内角互补表示出∠OBC,整理即可.
【详解】
∵,
∴,
∴,
在中,
∵,
∴,
∵,
∴,
∴,整理得,
故选:B.
【点睛】
本题考查了全等三角形的性质,等腰三角形两底角相等的性质,平行线的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.
二、填空题
1、20
【分析】
先根据旋转的性质得,则根据圆心角、弧、弦的关系得到∠DOC=∠AOB=20°,然后根据圆心角的度数等于它所对弧的度数即可得解.
【详解】
解:
∵将旋转n°得到,
∴
∴∠DOC=∠AOB=20°,
∴的度数为20度.
故答案为20.
【点睛】
本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了旋转的性质.
2、2 2
【分析】
先根据异分母分式的加法法则计算,再令等号两边的分子相等即可.
【详解】
解:∵,
∴,
∴a(x−2)+b(x+2)=4x,即(a+b)x−2(a−b)=4x,
∴a+b=4,a-b=0,
∴a=b=2,
故答案为:2,2.
【点睛】
本题考查的是分式的加减法,在解答此类问题时要注意通分的应用.
3、三角形的稳定性
【详解】
一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是三角形的稳定性.
故应填:三角形的稳定性
4、-1
【解析】
【分析】
解出不等式组的解集,与已知解集﹣1<x<1比较,可以求出a、b的值,然后代入即可得到最终答案.
【详解】
解不等式x﹣a>2,得:x>a+2,解不等式b﹣2x>0,得:x.
∵不等式的解集是﹣1<x<1,∴a+2=﹣1,1,解得:a=﹣3,b=2,则(a+b)2019=(﹣3+2)2019=﹣1.
故答案为:﹣1.
【点睛】
本题考查了解一元一次不等式组,已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.
5、π
【分析】
根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解.
【详解】
如图,连接CO,
∵AB=BC,CD=DE,
∴∠BOC+∠COD=∠AOB+∠DOE=90°,
∵AE=4,
∴AO=2,
∴S阴影==π.
【点睛】
本题考查了扇形的面积计算及圆心角、弧之间的关系.解答本题的关键是得出阴影部分的面积等于扇形BOD的面积.
三、解答题
1、
(1)33.6元
(2)15立方米
(3)12立方米,17立方米
【分析】
(1)用水8立方米,未超过12.5立方米,按照每立方米4.2元求解即可;
(2)由12.5×4.2=52.5<67说明该居民用水超过12.5立方米,设用水为x立方米,根据水费为67元列出方程:12.5×4.2+(x-12.5)×5.8=67,求解即可;
(3)分29立方米全部用在5月份、全部用在6月份、一部分用水在5月份一部分用水在6月份3种情况分类讨论求解.
(1)
解:∵每月用水量小于或等于12.5时每立方米按4.2元收费,一户居民用水为8立方米,
∴需要交纳的水费为:8×4.2=33.6元.
(2)
解:∵12.5×4.2=52.5<67元,
∴三月份该居民用水超过12.5立方米,设该居民用水为x立方米,
由题意可知:12.5×4.2+(x-12.5)×5.8=67,
解出:x=15(立方米),
故该居民三月份用水为15立方米.
(3)
解:①假设五、六月份都在第一阶梯时:(立方米),
∵25<29(不符合舍去);
②假设五、六月份都在第二阶梯时:(元),
∵128.2<129(不符合舍去);
③假设五月份在第一阶梯、六月份在第二阶梯时:设五月份用水量为x立方米,六月份为立方米,由题意得:,
解得:;
此时五月份用水量为12立方米,六月份用水量为立方米,符合题意,
∴五月份用水量为12立方米,六月份用水量为立方米.
【点睛】
本题考查一元一次方程的应用,解决本题的关键是读懂题意,得出每月用水量在三个不同阶梯时的水费进而求解.
2、
(1)
(2),理由见解析
【分析】
(1)令y=0,可得x的值,即可确定点A坐标,令x=0,可求出y的值,可确定点B坐标,再运用待定系数法即可求出直线m的解析式;
(2)根据可得抛物线在直线m的下方,从而可得.
(1)
令y=0,则
解得,
∵点A在另一交点左侧,
∴A(-3,0)
令x=0,则y=-3
∴B(0,-3)
设直线m的解析式为y=kx+b
把A(-3,0),B(0,-3)坐标代入得,
解得,
∴直线m的解析式为;
(2)
∵抛物线与直线的交点坐标为:A(-3,0),B(0,-3)
又∵
∴抛物线在直线m的下方,
∵点和点分别是抛物线和直线上的点,
∴
【点睛】
本题考查了二次函数,其中涉及到运用待定系数法求二次函数解析式,二次函数与坐标轴交点坐标的求法,运用数形结合的思想是解答本题的关键.
3、
(1)14单位长度;
(2)0.75秒或2.75秒;
(3)正确,这个时间是0.5秒,定值是6单位长度.
【分析】
(1)根据非负数的性质求出a=﹣6,b=8,求差即可求解;
(2)根据时间=路程和÷速度和,设行驶t秒钟两列火车行驶到车头A和C相距8个单位长度,列方程即可求解;
(3)由于PA+PB=AB=2,只需要PC+PD是定值,从快车AB上乘客P与慢车CD相遇到完全离开之间都满足PC+PD是定值,依此分析即可求解.
(1)
解:(1)∵|a+6|与(b﹣8)2互为相反数,
∴|a+6|+(b﹣8)2=0,
∴a+6=0,b﹣8=0,
解得a=﹣6,b=8.
∴此时刻快车头A与慢车头C之间相距8﹣(﹣6)=14(单位长度);
答:此时快车头A与慢车头C之间相距14单位长度;
(2)
解:设行驶t秒钟两列火车行驶到车头A和C相距8个单位长度,两车相遇前可列方程为
,
解得,.
两车相遇后可列方程为
,
解得,.
答:再行驶0.75秒或2.75秒两列火车行驶到车头AC相距8个单位长度;
(3)
正确,
∵PA+PB=AB=2,
当P在CD之间时,PC+PD是定值4,即路程为4,所以,行驶时间t=4÷(6+2)
=4÷8
=0.5(秒),
此时PA+PC+PB+PD=(PA+PB)+(PC+PD)=2+4=6(单位长度).
故这个时间是0.5秒,定值是6单位长度.
【点睛】
本题考查了一元一次方程的应用,数轴、绝对值和偶次方的非负性,熟练掌握行程问题的等量关系:时间=路程÷速度,根据数形结合的思想理解和解决问题.
4、
(1)
(2)点R行驶的总路程为;R停留的最后位置在数轴上所对应的有理数为
(3)或或或
【分析】
(1)根据非负数的意义分析即可;
(2)根据题意,三点重合,则只需计算点的位置以及运动时间即可;
(3)根据题意分情况讨论,根据情况建立一元一次方程解决问题.
(1)
故答案为:
(2)
当点P到达原点O时,动点R从原点O出发,
则到达点需要:秒
则此时点的位置为
设秒后停止运动,
则
解得
此时点的位置在,即点也在点位置,其对应的有理数为:
点的运动时间为,速度为个单位长度每秒,则总路程为
(3)
存在,的值为:
理由如下:,
11秒后点停止运动
①当分别位于的两侧时,如图,
此时,
表示的有理数为,表示的有理数为
解得
②当重合时,即第一次相遇时,如图,
则
解得
③当点从点返回时,则点表示的有理数为
若此时点未经过点,则
则
解得,则此种情况不存在
则此时点已经过点,,如图,
则
解得
④当在点右侧重合时,如图,
则
解得
此时点都已经到达点,此时即三点重合,停止运动
故t的值为:
【点睛】
本题考查了绝对值的非负性,用数轴上的点表示有理数,两点之间的距离,动点问题,一元一次方程的应用,数形结合是解题的关键.
5、
(1)
(2)小张在今年年底能获得的最大利润是元.
【分析】
(1)设小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为则可得方程再解方程即可得到答案;
(2)先求解今年的总的销量为箱,设今年总利润为元,价格下调元,则可建立二次函数为,再利用二次函数的性质求解最大值即可.
(1)
解:设小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为 则
整理得:
解得:(负根不合题意舍去)
答:小张的“熟客”们这两年向小张采购鱼卷的年平均增长率为
(2)
解: 2020年底小张“熟客”们采订购鱼卷的数量占小张年底总销售量的,
2020年小张年总销量为:(箱),
设今年总利润为元,价格下调元,则
令 则
所以抛物线的对称轴为:
所以函数有最大值,
当时,(元),
所以小张在今年年底能获得的最大利润是元.
【点睛】
本题考查的是一元二次方程的应用,二次函数的应用,掌握“确定相等关系建立一元二次方程,建立二次函数模型”是解本题的关键.
【历年真题】2022年河北省新乐市中考数学模拟测评 卷(Ⅰ)(含详解): 这是一份【历年真题】2022年河北省新乐市中考数学模拟测评 卷(Ⅰ)(含详解),共25页。试卷主要包含了已知+=0,则a-b的值是 .,下列变形中,正确的是等内容,欢迎下载使用。
【历年真题】2022年河北省中考数学考前摸底测评 卷(Ⅱ)(含详解): 这是一份【历年真题】2022年河北省中考数学考前摸底测评 卷(Ⅱ)(含详解),共39页。试卷主要包含了若,则下列不等式正确的是,把 写成省略括号后的算式为,下列说法中正确的个数是,某玩具店用6000元购进甲,下列变形中,正确的是等内容,欢迎下载使用。
【历年真题】最新中考数学模拟真题练习 卷(Ⅱ)(含详解): 这是一份【历年真题】最新中考数学模拟真题练习 卷(Ⅱ)(含详解),共21页。试卷主要包含了如果,且,那么的值一定是 .,下面几何体是棱柱的是等内容,欢迎下载使用。