【高频真题解析】2022年中考数学模拟定向训练 B卷(含答案详解)
展开
这是一份【高频真题解析】2022年中考数学模拟定向训练 B卷(含答案详解),共32页。试卷主要包含了方程的解为,如果,且,那么的值一定是 .,若,则下列不等式正确的是等内容,欢迎下载使用。
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2022年中考数学模拟定向训练 B卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在,,,中,最大的是( )
A. B. C. D.
2、观察下列算式,用你所发现的规律得出的个位数字是( )
,,,,
,,,……
A.2 B.4 C.6 D.8
3、如图,,点B和点C是对应顶点,,记,当时,与之间的数量关系为( )
A. B. C. D.
4、有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是( )
A. B.
C. D.
5、方程的解为( )
A. B. C. D.无解
6、如图,在中,D,E分别是边,上的点,若,则的度数为( )
A. B. C. D.
7、如果,且,那么的值一定是( ) .
A.正数 B.负数 C.0 D.不确定
8、若,则下列不等式正确的是( )
A. B. C. D.
9、在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.如图,若点D与圆心O不重合,∠BAC=25°,则∠DCA的度数( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.35° B.40° C.45° D.65°
10、下列解方程的变形过程正确的是( )
A.由移项得:
B.由移项得:
C.由去分母得:
D.由去括号得:
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、的最简公分母是_______________.
2、双曲线,当时,随的增大而减小,则________.
3、已知与互为相反数,则的值是____.
4、如图,在△ABC中,BC=3cm,∠BAC=60°,那么△ABC能被半径至少为 cm的圆形纸片所覆盖.
5、比较大小(填“>”或“<”): __________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系xOy中,顶点为M的抛物线经过点B(3,1)、C(﹣2,6),与y轴交于点A,对称轴为直线x=1.
(1)求抛物线的表达式;
(2)求△ABM的面积;
(3)点P是抛物线上一点,且∠PMB=∠ABM,试直接写出点P的坐标.
2、在平面直角坐标系中,抛物线与x轴交于点和点B,与y轴交于点C,顶点D的坐标为.
(1)直接写出抛物线的解析式;
(2)如图1,若点P在抛物线上且满足,求点P的坐标;
(3)如图2,M是直线BC上一个动点,过点M作轴交抛物线于点N,Q是直线AC上一个动点,当为等腰直角三角形时,直接写出此时点M及其对应点Q的坐标
3、如图是函数的部分图像.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)请补全函数图像;
(2)在图中的直角坐标系中直接画出的图像,然后根据图像回答下列问题:
①当x满足 时,,当x满足 时,;
②当x的取值范围为 时,两个函数中的函数值都随x的增大而增大?
4、如图,在矩形ABCD中,,,E是CD边上的一点,,M是BC边的中点,动点P从点A出发.沿边AB以的速度向终点B运动,过点P作于点H,连接EP.设动点P的运动时间是.
(1)当t为何值时,?
(2)设的面积为,写出与之间的函数关系式.
(3)当EP平分四边形PMEH的面积时,求t的值.
(4)是否存在时刻t,使得点B关于PE的对称点落在线段AE上?若存在,求出t的值;若不存在,说明理由.
5、鱼卷是泉州十大名小吃之一,不但本地人喜欢,还深受外来游客的赞赏.小张从事鱼卷生产和批发多年,有着不少来自零售商和酒店的客户,当地的习俗是农历正月没有生产鱼卷,客户正月所需要的鱼卷都会在农历十二月底进行一次性采购.2018年年底小张的“熟客”们共向小张采购了5000箱鱼卷,到2020年底“熟客”们采购了7200箱.
(1)求小张的“熟客"们这两年向小张采购鱼卷的年平均增长率;
(2)2020年底小张“熟客”们采订购鱼卷的数量占小张年底总销售量的,由于鱼卷受到游客们的青睐,小张做了一份市场调查,决定今年年底是否在网上出售鱼卷,若没有在网上出售鱼卷,则按去年的价格出售,每箱利润为15元,预计销售量与去年持平;若计划在网上出售鱼卷,则需把每箱售价下4至5元,且每下调1元销售量可增加1000箱,求小张在今年年底能获得的最大利润是多少元?
-参考答案-
一、单选题
1、B
【分析】
根据绝对值及乘方进行计算比较即可.
【详解】
,,,,
,,,中,最大的是.
故选:B.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了有理数的乘方和绝对值,熟练掌握运算法则是解题的关键.
2、D
【分析】
通过观察算式可以发现规律:左边是指数从1开始以2为底数的乘方,右边是个位数字,以2,4,8,6交替出现,也就是4个数为一个周期.……3,所以的个位数字应该与的个位数字相同,所以的个位数字是8.
【详解】
解:通过观察算式可以发现规律:左边是指数从1开始以2为底数的乘方,右边是个位数字,以2,4,8,6交替出现,也就是4个数为一个周期.……3,所以的个位数字应该与的个位数字相同,所以的个位数字是8.
故选D.
【点睛】
本题主要考查了数字类的规律问题,解题的关键在于能够准确找到相关规律.
3、B
【分析】
根据全等三角形对应边相等可得AB=AC,全等三角形对应角相等可得∠BAO=∠CAD,然后求出∠BAC=α,再根据等腰三角形两底角相等求出∠ABC,然后根据两直线平行,同旁内角互补表示出∠OBC,整理即可.
【详解】
∵,
∴,
∴,
在中,
∵,
∴,
∵,
∴,
∴,整理得,
故选:B.
【点睛】
本题考查了全等三角形的性质,等腰三角形两底角相等的性质,平行线的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.
4、A
【详解】
【分析】直接利用已知盘子上的物体得出物体之间的重量关系进而得出答案.
【详解】设的质量为x,的质量为y,的质量为:a,
假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,
故A选项错误,符合题意,
故选A.
【点睛】本题主要考查了等式的性质,正确得出物体之间的重量关系是解题关键.
5、D
【分析】
先去分母,把分式方程转化为整式方程,然后求解即可.
【详解】
解:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
去分母得,
解得,
经检验,是原分式方程的增根,
所以原分式方程无解.
故选D.
【点睛】
本题主要考查分式方程的求解,熟练掌握分式方程的求解是解题的关键.
6、D
【分析】
根据,推出,再由,得到,利用直角三角形中两个锐角互余即可得出.
【详解】
∵,∠DEB+∠DEC=180°,
∴,
又∵,
∴
∴,
即
故选:D.
【点睛】
本题考查了全等三角形的性质,直角三角形两个锐角和等于90°,掌握全等的性质是解题的关键.
7、A
【分析】
根据有理数的加减法法则判断即可.
【详解】
解:∵a<0,b<0,且|a|<|b|,
∴-b>0,|a|<|-b|,
∴=a+(-b)>0.
故选:A.
【点睛】
本题考查有理数的加减法法则.用到的知识点:减去一个数等于加上这个数的相反数,绝对值不等的异号加减,取绝对值较大的加数符号.
8、D
【分析】
不等式性质1:不等式两边同时加上(减去)一个数,不等号方向不改变.;
不等式性质2:不等式两边同时乘(除)一个正数,不等号方向不改变.;
不等式两边同时乘(除)一个负数,不等号方向改变.;
【详解】
A选项,不等号两边同时×(-8),不等号方向改变,,故A选项错误.;
B选项,不等号两边同时-2,不等号方向不改变,,故B选项错误.;
C选项,不等号两边同时×6,不等号方向不改变,,故C选项错误.;
D选项,不等号两边同时×,不等号方向不改变,,故D选项正确.;
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
不等式两边只有乘除负数时,不等号方向才改变.
9、B
【分析】
首先连接BC,由AB是直径,可求得∠ACB=90°,则可求得∠B的度数,然后由翻折的性质可得,弧AC所对的圆周角为∠B,弧ABC所对的圆周角为∠ADC,继而求得答案.
【详解】
连接BC,
∵AB是直径,
∴∠ACB=90°,
∵∠BAC=25°,
∴∠B=90°−∠BAC=90°−25°=65°,
根据翻折的性质,弧AC所对的圆周角为∠B,弧ABC所对的圆周角为∠ADC,
∴∠ADC+∠B=180°,
∴∠B=∠CDB=65°,
∴∠DCA=∠CDB−∠A=65°−25°=40°.
故选B.
【点睛】
本题考查圆周角定理,连接BC是解题的突破口.
10、D
【分析】
对于本题,我们可以根据解方程式的变形过程逐项去检查,必须符合变形规则,移项要变号.
【详解】
解析:A.由移项得:,故A错误;
B.由移项得:,故B错误;
C.由去分母得:,故C错误;
D.由去括号得: 故D正确.
故选:D.
【点睛】
本题主要考查了解一元一次方程变形化简求值,解题关键是:必须熟练运用移项法则.
二、填空题
1、
【分析】
确定最简公分母的方法是:
(1)取各分母系数的最小公倍数;
(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;
(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.
【详解】
解:的分母分别是xy、4x3、6xyz,故最简公分母是.
故答案为.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.
2、
【分析】
根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍.
【详解】
根据题意得:,解得:m=﹣2.
故答案为﹣2.
【点睛】
本题考查了反比例函数的性质.对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.
3、
【分析】
首先根据与互为相反数,可得+=0,进而得出,然后用含的代数式表示,再代入求值即可.
【详解】
解:∵与互为相反数,
∴+=0,
∴
∴
∴.
故答案为:.
【点睛】
本题主要考查了实数的运算以及相反数,根据相反数的概念求得与之间的关系是解题关键.
4、.
【分析】
作圆的直径,连接,根据圆周角定理求出,根据锐角三角函数的定义得出,代入求出即可.
【详解】
解:作圆O的直径CD,连接BD,
∵圆周角∠A、∠D所对弧都是,
∴∠D=∠A=60°.
∵CD是直径,∴∠DBC=90°.
∴sin∠D=.
又∵BC=3cm,∴sin60°=,解得:CD=.
∴的半径是(cm).
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴△ABC能被半径至少为cm的圆形纸片所覆盖.
【点睛】
本题考查了圆周角定理,三角形的外接圆与外心,锐角三角函数的定义的应用,关键是利用外接圆直径构造直角三角形求半径.
5、<.
【分析】
根据两个负数比较大小,其绝对值大的反而小比较即可.
【详解】
解:∵ , , ,
∴
相关试卷
这是一份【高频真题解析】湖南省湘潭市中考数学模拟定向训练 B卷(含详解),共26页。试卷主要包含了代数式的意义是等内容,欢迎下载使用。
这是一份【高频真题解析】湖南省怀化市中考数学模拟定向训练 B卷(含答案详解),共28页。试卷主要包含了抛物线的顶点为,下列图形是全等图形的是,下列等式变形中,不正确的是等内容,欢迎下载使用。
这是一份【高频真题解析】贵州省安顺市中考数学模拟定向训练 B卷(含答案及详解),共30页。试卷主要包含了如图个三角形.,单项式的次数是等内容,欢迎下载使用。