初中数学沪科版九年级下册第25章 投影与视图综合与测试同步达标检测题
展开
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试同步达标检测题,共21页。试卷主要包含了如图所示的几何体的主视图是,如图是下列哪个立体图形的主视图等内容,欢迎下载使用。
沪科版九年级数学下册第25章投影与视图专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、图中几何体的左视图是( )A. B.C. D.2、在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )A.A B.B C.C D.D3、如图,该几何体的左视图是( )A. B. C. D.4、如图是由4个相同的小正方体组成的一个几何体,则从正面看到的平面图形是( )A. B.C. D.5、如图,一路灯距地面5.6米,身高1.6米的小方从距离灯的底部(点O)5米的A处,沿OA所在的直线行走到点C时,人影长度增长3米,小方行走的路程AC=( )A.7.2 B.6.6 C.5.7 D.7.56、如图所示的几何体的主视图是( )A. B. C. D.7、一个几何体的三视图如图所示,这个几何体是( )A.圆柱 B.棱柱 C.圆锥 D.球8、如图是下列哪个立体图形的主视图( )A. B.C. D.9、如图是由6个同样大小的正方体摆成,将标有“1”的这个正方体去掉,所得几何体( )A.俯视图不变,左视图不变 B.主视图改变,左视图改变C.俯视图改变,主视图改变 D.主视图不变,左视图改变10、下列物体的左视图是圆的为( )A.足球 B. 水杯 C. 圣诞帽 D. 鱼缸第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、路灯下行人的影子属于______投影.(填“平行”或“中心”)2、如图,一个正方体由64块大小相同的小正方体搭成,现从中取走若干个小立方体块,得到一个新的几何体,新几何体与原几何体的三视图(从正面、从左面、从上面看到的所搭几何体的形状图)相同,最多取走___块小立方体块.3、如图,小亮从一盏9米高的路灯下处向前走了米到达点处时,发现自己在地面上的影子CE是米,则小亮的身高DC为____________米.4、由若干个相同的小正方体搭成的几何体的三视图相同,如图所示.至少再加_____个小正方体,该几何体可成为一个正方体.5、从正面和左面看一个长方体得到的形状图如图所示(单位:),则其从上面看到的形状图的面积为__________.三、解答题(5小题,每小题10分,共计50分)1、已知,如图,AB和DE是直立在地面上的两根立柱,AB=2m,某一时刻AB在太阳光下的投影BC=1m.(1)请你在图中画出此时DE在太阳光下的投影EF;(2)在测量AB的投影时,同时测量出DE在太阳光下的投影EF=1.5m,请你计算DE的长.2、(1)添线补全下列几何体的三种视图.(2)如图,在地面上竖直安装着AB、CD、EF 三根立柱,在同一时刻同一光源下立柱AB、CD 形成的影子为BG与DH.①填空:判断此光源下形成的投影是: 投影;②作出立柱EF在此光源下所形成的影子.3、如图,和是直立在地面上的两根支柱,m,某一时刻,在阳光下的投影m.(1)请你在图中利用尺规作出此时在阳光下的投影.(2)在测量的投影长时,同时测出在阳光下的投影长为6m,请你计算的长.4、如图,是由一些大小相同的小正方体组合成的简单几何体.(1)图中有_______块小正方体;(2)该几何体从正面看所得到的平面图形如图所示,请你在下面方格纸中分别画出从左边看和从上边看它所得到的平面图形.5、如图,是由若干个完全相同的棱长为1的小正方体组成的一个几何体.(1)请画出这个几何体的三视图;(2)该几何体的表面积(含下底面)为 ;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和左视图不变,那么最多可以再添加 个小正方体. -参考答案-一、单选题1、B【分析】根据左视图是从物体左面看,所得到的图形进行解答即可.【详解】解:图中几何体的左视图是:故选:B.【点睛】本题主要考查了简单组合体的三视图,解题的关键是掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.2、D【分析】由太阳光是平行光线,可知同一时刻下,影子的朝向一致,由此进行求解即可.【详解】解:太阳光是平行光线,因此同一时刻下,影子的朝向是一致的.故选:D.【点睛】考查主要考查了的影子问题,解题的关键在于能够知道太阳光是平行光线.3、C【分析】根据从左边看得到的图形是左视图解答即可.【详解】解:从左边看是一个正方形被水平的分成3部分,中间的两条分线是虚线,故C正确.故选C.【点睛】本题主要考查了简单组合体的三视图,掌握三视图的定义成为解答本题的关键.4、B【分析】根据图形特点,分别得出从正面看每一列正方形的个数,即可得出正面看到的平面图形.【详解】解:从正面看,有三列,第一列有一个正方形,第二列有一个正方形,第三列有两个个正方形,从正面看,有两行,第一行有一个正方形,第二行有三个正方形,故选B.【点睛】本题考查从不同方向看几何体.做此类题,最好是逐列分析每一列中正方形的个数然后组合即可.5、D【分析】设出影长AB的长,利用相似三角形可以求得AB的长,然后在利用相似三角形求得AC的长即可.【详解】解:∵AE⊥OD,OG⊥OD,∴AE//OG,∴∠AEB=∠OGB,∠EAB=∠GOB,∴△AEB∽△OGB,∴,即 ,解得:AB=2m;∵OA所在的直线行走到点C时,人影长度增长3米,∴DC=AB+3=5m,OD=OA+AC+CD=AC+10,∵FC∥GO,∴∠CFD=∠OGD,∠FCD=∠GOD,△DFC∽△DGO,∴,即,解得:AC=7.5m.所以小方行走的路程为7.5m.故选择:D.【点睛】本题主要考查的是相似三角形在实际中的中心投影的应用,掌握相似三角形判断与性质,利用对应边成比例是解答本题的关键.6、A【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看,如图:故选:A.【点睛】此题考查小正方体组成的几何体的三视图,正确掌握几何体三视图的画法是解题的关键.7、A【分析】根据三视图判断几何体的形状即可;【详解】由已知三视图可知,主视图、左视图为长方形,俯视图为圆,则符合条件的立体图形是圆柱;故选A.【点睛】本题主要考查了三视图的判断,准确分析是解题的关键.8、B【分析】根据主视图即从物体正面观察所得的视图求解即可.【详解】解:的主视图为,故选:B.【点睛】本题主要考查由三视图判断几何体,解题的关键是掌握由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.9、A【分析】根据几何体的三视图判断即可;【详解】根据已知图形,去掉标有“1”的这个正方体,主视图改变,俯视图和左视图不变;故选A.【点睛】本题主要考查了几何体三视图的应用,准确分析判断是解题的关键.10、A【分析】根据左视图是指从物体左面向右面正投影得到的投影图,即可求解.【详解】解:A、左视图为圆,故本选项符合题意;B、左视图为长方形,故本选项不符合题意;C、左视图为三角形,故本选项不符合题意;D、左视图为长方形,故本选项不符合题意;故选:A【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.二、填空题1、中心【分析】根据中心投影的概念填写即可.中心投影是指把光由一点向外散射形成的投影.【详解】解:路灯发出的光线可以看成是从一点发出的光线,像这样的光线所形成的投影叫做中心投影,故路灯下人的影子是中心投影.故答案为:中心.【点睛】本题主要考查了中心投影的概念,做题的关键是熟练掌握中心投影的概念,区别中心投影和平行投影概念.2、8【分析】由题意得,只需保留原几何的最外层和底层,最中间有8块,即可得.【详解】解: ∵新几何体与原几何体的三视图相同,∴只需保留原几何的最外层和底层,∴最中间有(块),故答案为:8.【点睛】本题考查了正方体的三视图,解题的关键是掌握正方体的三视图.3、1.8【分析】同一时刻下物体高度的比等于影长的比,构造相似三角形计算即可.【详解】如图,由题意知米,米,米,且,∴米,∵,∴又∵∴,∴,即,解得(米),即小亮的身高为1.8米;故答案为:1.8.【点睛】本题考查平行投影的相关知识点,能够根据题意构造相似是解题关键点.4、4【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,依此可得有几个小正方体,再用8减去小正方体的个数即可求解.【详解】解:根据三视图可得第一层有3个正方体,第二层有1个正方体,共有4个小正方体,8﹣4=4(个).故至少再加4个小正方体,该几何体可成为一个正方体.故答案为:4.【点睛】本题主要考查三视图,能够根据三视图想象出立体图是解题的关键.5、6【分析】从正面看,左面看,得到长方体的高为4,长为3,得到从上面看的矩形长为3;左边看,从上面看,宽相等,得到从上面看的矩形宽为2,计算即可.【详解】根据正面,左面高平齐,正面,上面长对正,左面,上面宽相等,得到从上面看的矩形长为3,宽为2故从上面看到的形状图的面积为6,故答案为:6.【点睛】本题考查了从不同方向看,熟练掌握三视图的特点与联系是解题的关键.三、解答题1、(1)画图见解析;(2)DE=3米【分析】(1)连接AC,过D点做AC平行线,交EB与点F,即可得投影EF.(2)太阳光属于平行光源,故,故,所以DE=3.【详解】(1)如图所示:(2)∵DE//AC∴∠EFD=∠BCA∴∴∴∴DE=3米.【点睛】本题考查了平行投影以及相似三角形的判定和性质,在实际生活中,处处都存在相似三角形.当我们与其接触时,就能利用相似的相关知识去识别和解决实际生活中的问题,如同一时刻物高与影长的问题.2、(1)画图见详解;(2)①中心;②见详解.【分析】(1)根据三视图的画图原理,看见的线是实线,看不见的线是虚线,左视图中补画燕尾槽底部线用虚线,俯视图中燕尾槽开口部分两条线用实线补画,燕尾槽底部两条线用虚线补画即可;(2)①连结AG,并反向延长,两CH并反向延长两射线交于点O,则点O就是光源,根据中心投影的定义“由同一点(点光源)发出的光线形成的投影叫做中心投影”即可得;②连接OE,并延长与地面相交,交点为I,如图FI为立柱EF在光源O下的投影即可.【详解】解:(1)根据三视图的画图原理,左视图中补画燕尾槽底部线用虚线,俯视图中燕尾槽开口部分两条线用实线补画,燕尾槽底部两条线用虚线补画;(2)①连结AG,并反向延长,两CH并反向延长两射线交于点O,则点O就是光源,由中心投影的定义得:此光线下形成的投影是:中心投影故答案为:中心;②如图,连接OE,并延长与地面相交,交点为I,则FI为立柱EF在光源O下所形成的影子.【点睛】本题考查了补画三视图实线与虚线,中心投影的定义,根据已知立柱的影子确认光源的位置,在光源下画立柱影子,掌握补画三视图实线与虚线区别,中心投影的定义,两立柱与影子确认光源的位置,在光源下画立柱影子是解题关键.3、(1)作图见解析;(2)【分析】(1)结合题意,连接,过点作,交直线于点,即可得到答案;(2)由(1)的结论得:;根据相似三角形的性质,通过证明∽,得,从而完成求解.【详解】解:(1)作法如图所示,连接,过点作,交直线于点, ∴就是的投影;(2)由(1)得:,∴,又∵,∴∽∴,即 ∵,,,∴.【点睛】本题考查了平行线、相似三角形的知识;解题的关键是熟练掌握相似三角形的性质,从而完成求解.4、(1)11;(2)见解析.【分析】(1)根据几何体的图形进行判断即可得到答案;(2)根据几何体的左视图有2列,每一列的小正方形数目为2,2;俯视图有4列,每一列的小正方形的数目为2,2,1,1.【详解】(1)左边第一例,两层,前后两行,共4个正方体,左边第二列,两层,前后两行,共4个正方体,左边第三列两层,只有后行2个正方体,左边第四列,后行1个正方体,一共有4+4+2+1=11个,故答案为:11;(2)从左边看:分两行,每行各看到2个正方形, 从上面看:分为四列,前后两行,前行左边有2个正方形,后行4个正方形.【点睛】本题考查简单组合体的三视图,和立方体的个数,解此题的关键在于平时加强空间想象的能力.5、(1)见解析;(2)28;(3)2【分析】(1)从正面看得到从左往右3列正方形的个数依次为1,3,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;(2)有顺序的计算上下面,左右面,前后面的表面积之和即可;(3)根据保持这个几何体的主视图和左视图不变,可知添加小正方体是1列和3列各加1个,依此即可求解.【详解】(1)如图所示:(2)(4×2+6×2+4×2)×(1×1) =(8+12+8)×1=28故答案为:28(3)由分析可知,最多可以再添加2个小正方体,如图,故答案为:2【点睛】此题考查了作图−三视图,用到的知识点为:计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错;三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试巩固练习,共39页。
这是一份沪科版九年级下册第24章 圆综合与测试同步练习题
这是一份初中数学沪科版九年级下册第25章 投影与视图综合与测试测试题,共18页。试卷主要包含了如图,该几何体的主视图是,如图所示的几何体的主视图是等内容,欢迎下载使用。