【真题汇总卷】2022年广东省普宁市中考数学模拟专项测试 B卷(精选)
展开2022年广东省普宁市中考数学模拟专项测试 B卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列运算中,正确的是( )
A.=﹣6 B.﹣=5 C.=4 D.=±8
2、如图,点在直线上,平分,,,则( )
A.10° B.20° C.30° D.40°
3、如图是一个正方体的展开图,把它折叠成正方体后,有“学”字一面的相对面上的字是( )
A.雷 B.锋 C.精 D.神
4、已知点D、E分别在的边AB、AC的反向延长线上,且ED∥BC,如果AD:DB=1:4,ED=2,那么BC的长是( )
A.8 B.10 C.6 D.4
5、下列各数中,是无理数的是( )
A.0 B. C. D.3.1415926
6、、两地相距,甲骑摩托车从地匀速驶向地.当甲行驶小时途径地时,一辆货车刚好从地出发匀速驶向地,当货车到达地后立即掉头以原速匀速驶向地.如图表示两车与地的距离和甲出发的时间的函数关系.则下列说法错误的是( )
A.甲行驶的速度为 B.货车返回途中与甲相遇后又经过甲到地
C.甲行驶小时时货车到达地 D.甲行驶到地需要
7、如图,中,是的中位线,连接,相交于点,若,则为( )
A.3 B.4 C.9 D.12
8、一把直尺与一块直角三角板按下图方式摆放,若,则( )
A.52° B.53° C.54° D.63°
9、如图,在的方格纸中,每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形.点E是格点四边形ABCD的AB边上一动点,连接ED,EC,若格点与相似,则的长为( )
A. B. C.或 D.或
10、在下列运算中,正确的是( )
A.a3•a2=a6 B.(ab2)3=a6b6
C.(a3)4=a7 D.a4÷a3=a
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,是的中线,,,把沿翻折,使点落在的位置,则为___.
2、如图是某个几何体的表面展开图,若围成几何体后,与点E重合的两个点是______.
3、将如图所示的平面展开图折叠成正方体后,相对面上两个数的和都相等,则____.
4、在中,DE∥BC,DE交边AB、AC分别于点D、E,如果与四边形BCED的面积相等,那么AD:DB的值为_______
5、计算: _______
三、解答题(5小题,每小题10分,共计50分)
1、如图,是由几个大小相同的小正方体所搭成的几何体从上面看到的形状图,小正方形中的数字表示这个位置小正方体的个数,请画出从正面、左面看到的这个几何体的形状图.
2、计算:
3、定义:如图①.如果点D在的边上且满足.那么称点D为的“理根点”,如图②,在中,,如果点D是的“理想点”,连接.求的长.
4、已知a+b=5,ab=﹣2.求下列代数式的值:
(1)a2+b2;
(2)2a2﹣3ab+2b2.
5、如图,边长为1的正方形ABCD中,对角线AC、BD相交于点O,点Q、R分别在边AD、DC上,BR交线段OC于点P,,QP交BD于点E.
(1)求证:;
(2)当∠QED等于60°时,求的值.
-参考答案-
一、单选题
1、C
【分析】
根据算术平方根的意义逐项化简即可.
【详解】
解:A.无意义,故不正确;
B.﹣=-5,故不正确;
C.=4,正确;
D.=8,故不正确;
故选C.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.
2、A
【分析】
设∠BOD=x,分别表示出∠COD,∠COE,根据∠EOD=50°得出方程,解之即可.
【详解】
解:设∠BOD=x,
∵OD平分∠COB,
∴∠BOD=∠COD=x,
∴∠AOC=180°-2x,
∵∠AOE=3∠EOC,
∴∠EOC=∠AOC==,
∵∠EOD=50°,
∴,
解得:x=10,
故选A.
【点睛】
本题考查角平分线的意义,通过图形表示出各个角,是正确计算的前提.
3、D
【分析】
根据正方体的表面展开图的特征,判断相对的面即可.
【详解】
解:由正方体的表面展开图的特征可知:
“学”的对面是“神”,
故选:D.
【点睛】
本题考查了正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的关键.
4、C
【分析】
由平行线的性质和相似三角形的判定证明△ABC∽△ADE,再利用相似三角形的性质和求解即可.
【详解】
解:∵ED∥BC,
∴∠ABC=∠ADE,∠ACB=∠AED,
∴△ABC∽△ADE,
∴BC:ED= AB:AD,
∵AD:DB=1:4,
∴AB:AD=3:1,又ED=2,
∴BC:2=3:1,
∴BC=6,
故选:C
【点睛】
本题考查平行线的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答的关键.
5、B
【分析】
无限不循环小数叫做无理数,有限小数或无限循环小数叫做有理数,根据无理数的定义即可作出判断.
【详解】
A.0是整数,属于有理数,故本选项不合题意;
B.是无理数,故本选项符合题意;
C.是分数,属于有理数,故本选项不合题意;
D.3.1415926是有限小数,属于有理数,故本选项不合题意;
故选:B.
【点睛】
本题考查了无理数,掌握无理数的含义是解题的关键.
6、C
【分析】
根据函数图象结合题意,可知两地的距离为,此时甲行驶了1小时,进而求得甲的速度,即可判断A、D选项,根据总路程除以速度即可求得甲行驶到地所需要的时间,根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,据此判断B选项,求得相遇时,甲距离地的距离,进而根据货车行驶的路程除以时间即可求得货车的速度,进而求得货车到达地所需要的时间.
【详解】
解:两地的距离为,
故A选项正确,不符合题意;
故D选项正确,不符合题意;
根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,
则
即货车返回途中与甲相遇后又经过甲到地
故B选项正确,
相遇时为第4小时,此时甲行驶了,
货车行驶了
则货车的速度为
则货车到达地所需的时间为
即第小时
故甲行驶小时时货车到达地
故C选项不正确
故选C
【点睛】
本题考查了一次函数的应用,弄清楚函数图象中各拐点的意义是解题的关键.
7、A
【分析】
根据DE∥BC,得△DEF∽△CBF,得到,利用BE是中线,得到+=,计算即可.
【详解】
∵是的中位线,
∴DE∥BC,BC=2DE,
∴△DEF∽△CBF,
∴,
∴,
∵,
∴,
∵BE是中线,
∴=,
∵是的中位线,
∴DE∥BC,
∴=,
∴=,
∴++=+,
∴+=,
∴=3,
故选A.
【点睛】
本题考查了三角形中位线定理,中线的性质,相似三角形的性质,熟练掌握中位线定理,灵活选择相似三角形的性质是解题的关键.
8、B
【分析】
过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.
【详解】
解:如图,过三角板的直角顶点作直尺两边的平行线,
∵直尺的两边互相平行,
∴,,
∴,
∴,
故选B.
【点睛】
本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.
9、C
【分析】
分∽和∽两种情况讨论,求得AE和BE的长度,根据勾股定理可求得DE和EC的长度,由此可得的长.
【详解】
解:由图可知DA=3,AB=8,BC=4,AE=8-EB,∠A=∠B=90°,
若∽,
则,即,
解得或,
当时,,,
,
当时,,,
,
若∽,
则,即,解得(不符合题意,舍去),
故或,
故选:C.
【点睛】
本题考查相似三角形的性质和判定,勾股定理,能结合图形,分类讨论是解题关键.注意不要忽略了题干中格点三角形的定义.
10、D
【分析】
由;;,判断各选项的正误即可.
【详解】
解:A中,错误,故本选项不合题意;
B中,错误,故本选项不合题意;
C中,错误,故本选项不合题意;
D中,正确,故本选项符合题意.
故选:D.
【点睛】
本题考查了同底数幂的乘除,积的乘方,幂的乘方等知识.解题的关键在于正确求解.
二、填空题
1、
【分析】
根据翻折知:∠ADE=∠ADC=45°,ED=EC,得到∠BDE=90°,利用勾股定理计算即可.
【详解】
解:是的中线,
,
翻折,
,,
,,
在中,由勾股定理得:,
故答案为:.
【点睛】
本题考查的是翻折变换以及勾股定理,熟记翻折前后图形的对应角相等、对应边相等是解题的关键.
2、A和C
【分析】
根据题意可知该几何体的展开图是四棱锥的平面展开图,找出重合的棱,即可找到与点E重合的两个点.
【详解】
折叠之后CD和DE重合为一条棱,C点和E点重合;AH和EF重合为一条棱,A点和E点重合.
所以与点E重合的两个点是A点和C点.
故答案为:A和C.
【点睛】
此题考查的是四棱锥的展开图,解决此题的关键是运用空间想象能力把展开图折成四棱锥,找到重合的点.
3、
【分析】
利用正方体及其表面展开图的特点,结合相对面上两个数之和相等,列方程即可得到结论.
【详解】
解:由正方体的展开图的特点可得:
相对,相对,相对,
相对面上两个数的和都相等,
解得:
故答案为:
【点睛】
本题考查的是正方体展开图相对面上的数字,掌握“正方体的展开图的特点”是解本题的关键.
4、##
【分析】
由DE∥BC,可得△ADE∽△ABC,又由△ADE的面积与四边形BCED的面积相等,根据相似三角形的面积比等于相似比的平方,即可求得的值,然后利用比例的性质可求出AD:DB的值.
【详解】
解:∵DE∥BC,
∴△ADE∽△ABC,
∵△ADE的面积与四边形BCED的面积相等,
∴,
∴,
∴,
∴.
故答案为:.
【点睛】
此题考查了相似三角形的判定与性质.此题难度不大,解题的关键是注意相似三角形的面积比等于相似比的平方定理的应用与数形结合思想的应用.
5、##
【分析】
根据二次根式的加减乘除运算法则逐个运算即可.
【详解】
解:原式,
故答案为:.
【点睛】
本题考查了二次根式的四则运算,属于基础题,计算过程中细心即可.
三、解答题
1、见解析
【分析】
由已知条件可知,从正面看有3列,每列小正方数形数目分别为4,2,3;从左面看有3列,每列小正方形数目分别为2,4,3,据此可画出图形.
【详解】
解:如图所示:
【点睛】
考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.
2、
【分析】
先将二次根式化简,再去括号、合并即可.
【详解】
解:
【点睛】
本题主要考查了二次根式的加减运算,注意二次根式的加减法实质是合并同类二次根式.
3、.
【分析】
只要证明CD⊥AB即可解决问题.
【详解】
解:如图②中,
∵点D是△ABC的“理想点”,
∴∠ACD=∠B,
∵,
∴,
∴,
,
在Rt△ABC中,
,
∴BC= ,
∵,
.
【点睛】
本解考查了直角三角形判定和性质,理解新定义是解本题的关键.
4、
(1)29;
(2)64
【分析】
(1)利用已知得出(a+b)2=25,进而化简求出即可;
(2)利用(1)中所求,进而求出即可.
(1)
解:(1)∵a+b=5,ab=﹣2,∴(a+b)2=25,
则a2+b2+2×(﹣2)=25,
故a2+b2=29;
(2)
(2)2a2﹣3ab+2b2
=2(a2+b2)﹣3ab
=2×29﹣3×(﹣2)
=64.
【点睛】
本题考查了完全平方公式的应用,解题的关键是正确利用完全平方公式求出.
5、
(1)见解析
(2)
【分析】
(1)根据正方形的性质,可得∠CAD=∠BDC=45°,∠OBP+∠OPB=90°,再由,可得∠OBP=∠OPE,即可求证;
(2)设OE=a,根据∠QED等于60°,可得∠BEP=60°,然后利用锐角三角函数,可得BD=2OB=6a, ,然后根据相似三角形的对应边成比例,即可求解.
(1)
证明:在正方形ABCD中,
∠CAD=∠BDC=45°,BD⊥AC,
∴∠BOC=90°,
∴∠OBP+∠OPB=90°,
∵,
∴∠BPQ=90°,
∴∠OPE+∠OPB=90°,
∴∠OBP=∠OPE,
∴;
(2)
解:设OE=a,
在正方形ABCD中,∠POE=90°,OA=OB=OD,
∵∠QED等于60°,
∴∠BEP=60°,
在 中,
,,
∵,∠BEP=60°,
∴∠PBE=30°,
∴, ,
∴OA=OB=BE-OE=3a,
∴BD=2OB=6a,
∴ ,
∵,
∴.
【点睛】
本题主要考查了相似三角形的判定和性质,解直角三角形,熟练掌握相似三角形的判定和性质定理,特殊角锐角三角函数值是解题的关键.
【真题汇编】2022年广东省普宁市中考数学历年高频真题专项攻克 B卷(精选): 这是一份【真题汇编】2022年广东省普宁市中考数学历年高频真题专项攻克 B卷(精选),共25页。
【真题汇总卷】2022年中考数学模拟定向训练 B卷(精选): 这是一份【真题汇总卷】2022年中考数学模拟定向训练 B卷(精选),共21页。试卷主要包含了若,则的值是,观察下列图形,下列关于整式的说法错误的是,下列计算正确的是,一组样本数据为1等内容,欢迎下载使用。
【真题汇总卷】2022年中考数学模拟专项测试 B卷(含答案及详解): 这是一份【真题汇总卷】2022年中考数学模拟专项测试 B卷(含答案及详解),共27页。试卷主要包含了下列各对数中,相等的一对数是等内容,欢迎下载使用。