【真题汇总卷】2022年北京市平谷区中考数学备考模拟练习 (B)卷(精选)
展开2022年北京市平谷区中考数学备考模拟练习 (B)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、今年,网络购物已经成为人们生活中越来越常用的购物方式.元旦期间,某快递分派站有包裹若干件需快递员派送,若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件,设该分派站有x名快递,则可列方程为( )
A. B. C. D.
2、点P(4,﹣3)关于原点对称的点的坐标是( )
A.(3,﹣4) B.(﹣4,3) C.(﹣4,﹣3) D.(4,3)
3、如图,是多功能扳手和各部分功能介绍的图片.阅读功能介绍,计算图片中∠α的度数为( )
A.60° B.120° C.135° D.150°
4、下列命题正确的是
A.零的倒数是零
B.乘积是1的两数互为倒数
C.如果一个数是,那么它的倒数是
D.任何不等于0的数的倒数都大于零
5、将,2,,3按如图的方式排列,规定表示第m排左起第n个数,则与表示的两个数之积是( )
A. B.4 C. D.6
6、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )
A.①②③ B.①②④ C.③④ D.①③④
7、 “科学用眼,保护视力”是青少年珍爱生命的具体表现,某班50名同学的视力检查数据如下表:
视力 | 4.3 | 4.4 | 4.5 | 4.6 | 4.7 | 4.8 | 4.9 | 5.0 |
人数 | 2 | 3 | 6 | 9 | 12 | 10 | 5 | 3 |
则视力的众数是( )
A.4.5 B.4.6 C.4.7 D.4.8
8、已知二次函数y=ax2+bx+c的部分图象如图,则关于x的一元二次方程ax2+bx+c=0的解为( )
A.x1=﹣4,x2=2 B.x1=﹣3,x2=﹣1
C.x1=﹣4,x2=﹣2 D.x1=﹣2,x2=2
9、一列火车匀速行驶,经过一条长400米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,则火车的长为( )
A. B.133 C.200 D.400
10、在0,,1.333…,,3.14中,有理数的个数有( )
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某食品店推出两款袋装营养早餐配料,甲种每袋装有10克花生,10克芝麻,10克核桃;乙种每袋装有20克花生,5克芝麻,5克核桃.甲、乙两款袋装营养早餐配料每袋成本价分别为袋中花生、芝麻、核桃的成本价之和.已知花生每克成本价0.02元,甲款营养早餐配料的售价为2.6元,利润率为30%,乙款营养早餐配料每袋利润率为20%.若这两款袋装营养早餐配料的销售利润率达到24%,则该公司销售甲、乙两款袋装营养早餐配料的数量之比是______.
2、已知点A的坐标是,点B是正比例函数的图像上一点,若只存在唯一的点B,使为等腰三角形,则k的取值范围是______.
3、已知是二元一次方程的一个解,那么_______.
4、如图,点Q在线段AP上,其中,
第一次分别取线段AP和AQ的中点,,得到线段,则线段____________;
再分别取线段和的中点,,得到线段;
第三次分别取线段和的中点,,得到线段;连续这样操作2021次,则每次的两个中点所形成的所有线段之和____________.
5、如图,在中,,,以为直角边作等腰直角,再以为直角边作等腰直角,…,按照此规律作图,则的长度为______,的长度为______.
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图,在中,是边边上的高,是中线,是的中点,.求证:.
2、解方程组:.
3、计算:
(1)-14-[4-(-3)2] (2)(- +)×(-24)
4、先化简,再求值:,其中.
5、如图,在△ABC中,已知D是BC边的中点,过点D的直线GF交AC于F,交AC的平行线BG于点G,DE⊥GF,交AC的延长线于点E,联结EG.
(1)说明BG与CF相等的理由.
(2)说明∠BGD与∠DGE相等的理由.
-参考答案-
一、单选题
1、B
【分析】
设该分派站有x个快递员,根据“若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件”,即可得出关于x的一元一次方程,求出答案.
【详解】
解:设该分派站有x名快递员,则可列方程为:
7x+6=8x-1.
故选:B.
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系是解题的关键.
2、B
【分析】
根据关于原点对称的点,横坐标与纵坐标都互为相反数,进而得出答案.
【详解】
解:点P(4,-3)关于原点对称的点的坐标是(-4,3),
故选:B.
【点睛】
此题主要考查了关于原点对称点的性质,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.
3、B
【分析】
观察图形发现∠α是正六边形的一个内角,直接求正六边形的内角即可.
【详解】
∠α=
故选:B.
【点睛】
本题考查正多边形的内角,解题的关键是观察图形发现∠α是正六边形的一个内角.
4、B
【分析】
根据倒数的概念、有理数的大小比较法则判断.
【详解】
解:、零没有倒数,本选项说法错误;
、乘积是1的两数互为倒数,本选项说法正确;
、如果,则没有倒数,本选项说法错误;
、的倒数是,,则任何不等于0的数的倒数都大于零说法错误;
故选:.
【点睛】
本题考查了有理数的乘法及倒数的概念,熟练掌握倒数概念是关键.
5、A
【分析】
根据数的排列方法可知,第一排1个数,第二排2个数,第三排3个数,第四排4个数,…第(m-1)排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个循环,根据题目意思找出第m排第m个数后再计算
【详解】
解:(5,4)表示第5排从左向右第4个数,由图可知,(5,4)所表示的数是2;是第21排第7个数,则前20排有个数,则是第个数,
,2,,3四个数循环出现,
表示的数是
与表示的两个数之积是
故选A
【点睛】
本题考查了数字的变化规律,判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.
6、D
【分析】
根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.
【详解】
解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;
火车的长度是150米,故②错误;
整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;
隧道长是:45×30-150=1200(米),故④正确.
故选:D.
【点睛】
本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
7、C
【分析】
出现次数最多的数据是样本的众数,根据定义解答.
【详解】
解:∵4.7出现的次数最多,∴视力的众数是4.7,
故选:C.
【点睛】
此题考查了众数的定义,熟记定义是解题的关键.
8、A
【分析】
关于x的一元二次方程ax2+bx+c=0(a≠0)的根即为二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点的横坐标.
【详解】
解:根据图象知,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点是(2,0),对称轴是直线x=−1.
设该抛物线与x轴的另一个交点是(x,0).
则,
解得,x=-4 ,
即该抛物线与x轴的另一个交点是(-4,0).
所以关于x的一元二次方程ax2+bx+c=0(a≠0)的根为x1=−4,x2=2.
故选:A.
【点睛】
本题考查了抛物线与x轴的交点.解题时,注意抛物线y=ax2+bx+c(a≠0)与关于x的一元二次方程ax2+bx+c=0(a≠0)间的转换.
9、C
【分析】
设火车的车长是x米,根据经过一条长400m的隧道需要30秒的时间,可求火车速度,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,可求火车上速度,根据车速相同可列方程求解即可.
【详解】
解:设火车的长度是x米,根据题意得出:=,
解得:x=200,
答:火车的长为200米;
故选择C.
【点睛】
本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.
10、D
【分析】
根据有理数的定义:整数和分数统称为有理数,进行求解即可.
【详解】
解:0是整数,是有理数;
是无限不循环小数,不是有理数;
是分数,是有理数;
是分数,是有理数;
3.14是有限小数,是分数,是有理数,
故选D.
【点睛】
此题考查有理数的定义,熟记定义并运用解题是关键.
二、填空题
1、13:30
【分析】
设1克芝麻成本价m元,1克核桃成本价n元,根据“花生每克成本价0.02元,甲款营养早餐配料的售价为2.6元,利润率为30%”列出方程得到m+n=0.18,进而算出甲乙两款袋装营养早餐的成本价,再根据“甲每袋袋装营养早餐的售价为2.6元,利润率为30%,乙种袋装营养早餐每袋利润率为20%.若公司销售这种混合装的袋装营养早餐总利润率为24%”列出方程即可得到甲、乙两种袋装营养早餐的数量之比.
【详解】
解:设1克芝麻成本价m元,1克核桃成本价n元,根据题意得:
(10×0.02+10m+10n)×(1+30%)=2.6,
解得m+n=0.18,
则甲种干果的成本价为10×0.02+10m+10n=2(元),
乙种干果的成本价为20×0.02+5m+5n=0.4+5×0.18=1.3(元),
设甲种干果x袋,乙种干果y袋,根据题意得:
2x×30%+1.3y×20%=(2x+1.3y)×24%,
解得,,即甲、乙两种袋装袋装营养早餐的数量之比是13:30.
故答案为:13:30.
【点睛】
本题考查二元一次方程的应用,解题的关键是找出等量关系列出方程.
2、
【分析】
作OA的垂直平分线,交OA于点C,y轴于点D.根据题意结合垂直平分线的性质可判断出当该正比例函数图象在与OA的垂直平分线平行的直线(包括此直线)和y轴之间时,在x>0的条件下,该函数图象上只存在唯一的点B,使为等腰三角形.再根据点A的坐标,即可求出直线CD的斜率,即可得出k的取值范围.
【详解】
如图,作OA的垂直平分线,交OA于点C,y轴于点D.
由垂直平分线的性质可知,当点B在OA的垂直平分线上时,即满足为等腰三角形,但此时在该正比例函数上还有一点B可使为等腰三角形,如图,和都为等腰三角形,此时不符合只存在唯一的点B,使为等腰三角形,
故要想只存在唯一的点B,使为等腰三角形,并在x>0的条件下,只能B点不在OA的垂直平分线上,即该正比例函数图象在与OA的垂直平分线平行的直线(包括此直线)和y轴之间.
设OA的函数解析式为:,则
解得:.
设CD的函数解析式为:,
∵CD在OA的垂直平分线上,
∴,即,
解得:.
∵该正比例函数图象在与OA的垂直平分线平行的直线(包括此直线)和y轴之间,
∴,即.
故答案为:.
【点睛】
本题考查垂直平分线的性质,等腰三角形的定义,一次函数和正比例函数的图像和性质,根据题意理解当该正比例函数图象在与OA的垂直平分线平行的直线(包括此直线)和y轴之间时,在x>0的条件下,该函数图象上只存在唯一的点B,使为等腰三角形是解答本题的关键.
3、##
【分析】
把代入,即可求出a的值.
【详解】
解:由题意可得:,
,
解得:,
故答案为:.
【点睛】
本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.
4、5
【分析】
根据线段中点的定义可得P1Q1=PQ,P2Q2=P1Q1,P3Q3=P2Q2,根据规律可得答案.
【详解】
解:∵线段AP和AQ的中点是P1,Q1,
∴P1Q1=AP1-AQ1=AP-AQ=PQ=5;
∵线段AP1和AQ1的中点P2,Q2,
∴P2Q2=AP2-AQ2=AP1-AQ1=P1Q1=PQ,
…,
∴P1Q1+P2Q2+P3Q3+…+P2021Q2021
=PQ+PQ+PQ+…+PQ
=(1-)PQ
=.
故答案为:.
【点睛】
本题考查了两点间的距离,能够根据线段中点的定义得到其中的规律是解题关键.
5、
【分析】
根据等腰直角三角形斜边等于直角边的倍分别求解即可.
【详解】
解:∵,
∴
同理可得,
⋯
故答案为:,.
【点睛】
本题考查了等腰直角三角形的性质,熟记等腰直角三角形斜边等于直角边的倍是解题的关键.
三、解答题
1、见详解.
【分析】
连接DE,由中垂线的性质可得DE=DC,再由直角三角形斜边上的中线等于斜边的一半得到DE=BE,进而得到CDAB.
【详解】
证明:如图,连接DE,
∵F是CE的中点,DF⊥CE,
∴DF垂直平分CE,
∴DE=DC
∵AD⊥BC,CE是边AB上的中线,
∴DE是Rt△ABD斜边上的中线,即DE=BE=AB,
∴CD =DE=AB.
【点睛】
本题考查了中垂线的性质,直角三角形斜边上的中线的性质,推出DE=CD是解决本题的关键.
2、
【详解】
解:,
用②①,得:,
解得:,
将代入①,得:,
解得:,
方程组的解为.
【点睛】
此题考查了解二元一次方程组,正确掌握解方程组的方法:代入法和加减法并应用解决问题是解题的关键.
3、(1)4;(2)-22
【分析】
(1)先计算乘方,再计算加减法;
(2)根据乘法分配律计算.
【详解】
解:(1)-14-[4-(-3)2]
=-1-(-5)
=4;
(2)(- +)×(-24)
=×(-24)-×(-24)+×(-24)
=-6+20-36
=-22.
【点睛】
此题考查了有理数的计算,正确掌握含乘方的有理数的混合运算法则、乘法分配律法则是解题的关键.
4、,-1.
【分析】
先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算即可.
【详解】
解:原式=,
当时,原式=.
【点睛】
本题考查了分式的化简与求值,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.
5、
(1)见祥解
(2)见祥解
【分析】
(1)求出BD=DC,∠GBD=∠DCF,证出△BDG≌△CDF即可;
(2)根据线段垂直平分线性质得出EF=EG,求出∠DFE=∠DGE,∠DFE=∠BGD,即可得出答案.
(1)
解 ∵D为BC中点,
∴BD=DC(中点的定义),
∵BG∥FC(已知),
∴∠GBD=∠DCF(两直线平行,内错角相等),
在△BDG和△CDF中,
,
∴△BDG≌△CDF(ASA),
∴BG=CF(全等三角形对应边相等);
(2)
解:∵D是BC边的中点,DE⊥GF,即DE为线段GF的中垂线,
∴EF=EG,
∴∠DFE=∠DGE(等边对等角),)
∵∠DFE=∠BGD(全等三角形对应角相等),
∴∠BGD=∠DGE(等量代换).
【点睛】
本题考查全等三角形的判定与性质,线段垂直平分线的性质.解答本题的关键是明确题意,找出所求问题需要的条件,证明三角形全等.
【真题汇总卷】2022年重庆市南岸区中考数学备考模拟练习 (B)卷(精选): 这是一份【真题汇总卷】2022年重庆市南岸区中考数学备考模拟练习 (B)卷(精选),共22页。试卷主要包含了下列方程中,解为的方程是等内容,欢迎下载使用。
【真题汇总卷】2022年广东省河源市中考数学备考模拟练习 (B)卷(精选): 这是一份【真题汇总卷】2022年广东省河源市中考数学备考模拟练习 (B)卷(精选),共25页。
【真题汇总卷】2022年北京市平谷区中考数学备考真题模拟测评 卷(Ⅰ)(含答案及解析): 这是一份【真题汇总卷】2022年北京市平谷区中考数学备考真题模拟测评 卷(Ⅰ)(含答案及解析),共23页。试卷主要包含了如图,在中,,,则的值为,下列方程是一元二次方程的是,已知圆O的半径为3,AB,有下列说法等内容,欢迎下载使用。