【真题汇编】2022年山东省济南市中考数学模拟测评 卷(Ⅰ)(含答案及解析)
展开2022年山东省济南市中考数学模拟测评 卷(Ⅰ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知4个数:,,,,其中正数的个数有( )
A.1 B. C.3 D.4
2、如图,已知双曲线 经过矩形 边 的中点 且交 于 ,四边形 的面积为 2,则
A.1 B.2 C.4 D.8
3、下列说法中,正确的有( )
①射线AB和射线BA是同一条射线;②若,则点B为线段AC的中点;③连接A、B两点,使线段AB过点C;④两点的所有连线中,线段最短.
A.0个 B.1个 C.2个 D.3个
4、甲、乙两地相距s千来,汽车从甲地匀速行驶到乙地,行驶的时间t(小时)关于行驶速度v(千米时)的函数图像是( )
A. B.
C. D.
5、下列利用等式的性质,错误的是( )
A.由,得到 B.由,得到
C.由,得到 D.由,得到
6、文博会期间,某公司调查一种工艺品的销售情况,下面是两位调查员和经理的对话.
小张:该工艺品的进价是每个22元;
小李:当销售价为每个38元时,每天可售出160个;当销售价降低3元时,平均每天将能多售出120个.
经理:为了实现平均每天3640元的销售利润,这种工艺品的销售价应降低多少元?
设这种工艺品的销售价每个应降低x元,由题意可列方程为( )
A.(38﹣x)(160+×120)=3640
B.(38﹣x﹣22)(160+120x)=3640
C.(38﹣x﹣22)(160+3x×120)=3640
D.(38﹣x﹣22)(160+×120)=3640
7、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第1次操作;做第2次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续操作下去,从数串2,9,7开始操作第2022以后所产生的那个新数串的所有数之和是( )
A.20228 B.10128 C.5018 D.2509
8、已知有理数在数轴上的位置如图所示,且,则代数式的值为( ).
A. B.0 C. D.
9、若关于x的不等式组无解,则m的取值范围是( )
A. B. C. D.
10、如图,在中,,,,分别在、上,将沿折叠,使点落在点处,若为的中点,则折痕的长为( )
A. B.2 C.3 D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在△ABC中,∠ABC=120°,AB=12,点D在边AC上,点E在边BC上,sin∠ADE=,ED=5,如果△ECD的面积是6,那么BC的长是_____.
2、实数a、b在数轴上对应点的位置如图所示,化简的值是_________.
3、的倒数是________;绝对值等于3的数是________.
4、如图,已知中,,,,作AC的垂直平分线交AB于点、交AC于点,连接,得到第一条线段;作的垂直平分线交AB于点、交AC于点,连接,得到第二条线段;作的垂直平分线交AB于点、交于点,连接,得到第三条线段;……,如此作下去,则第n条线段的长为______.
5、不等式的最大整数解是_______.
三、解答题(5小题,每小题10分,共计50分)
1、某药店在防治新型冠状病毒期间,购进甲、乙两种医疗防护口罩,已知每件甲种口罩的价格比每件乙种口罩的价格贵8元,用1200元购买甲种口罩的件数恰好与用1000元购买乙种口罩的件数相同.
(1)求甲、乙两种口罩每件的价格各是多少元?
(2)计划购买这两种口罩共80件,且投入的经费不超过3600元,那么,最多可购买多少件甲种口罩?
2、某市为了解七年级数学教育教学情况,对全市七年级学生进行数学综合素质测评,我校也随机抽取了部分学生的测试成绩作为样本进行分析,请根据图中所给出的信息,解答下列问题:
(1)在这次调查中被抽取学生的总人数为 人;将表示成绩类别为“中”的条形统计图补充完整.
(2)成绩类别为“优”的圆心角的度数为 .
(3)某校七年级共有750人参加了这次数学考试,估计本校七年级共有多少名学生的数学成绩可达到良或良以上等级?
3、解分式方程:.
4、已知:如图,Rt△ABC中,∠C=90°,CA=CB,D是边CB上一点,DE⊥AB于点E,且CD=BE.求证:AD平分∠BAC.
5、如图,在四边形ABCD中,BA=BC,AC⊥BD,垂足为O.P是线段OD上的点(不与点O重合),把线段AP绕点A逆时针旋转得到AQ,∠OAP=∠PAQ,连接PQ,E是线段PQ的中点,连接OE交AP于点F.
(1)若BO=DO,求证:四边形ABCD是菱形;
(2)探究线段PO,PE,PF之间的数量关系.
-参考答案-
一、单选题
1、C
【分析】
化简后根据正数的定义判断即可.
【详解】
解:=1是正数,=2是正数,=1.5是正数,=-9是负数,
故选C.
【点睛】
本题考查了有理数的乘方、相反数、绝对值的意义,以及正负数的意义,正确化简各数是解答本题的关键.
2、B
【分析】
利用反比例函数图象上点的坐标,设,则根据F点为AB的中点得到.然后根据反比例函数系数k的几何意义,结合,即可列出,解出k即可.
【详解】
解:设,
∵点F为AB的中点,
∴.
∵,
∴,即,
解得:.
故选B.
【点睛】
本题考查反比例函数的k的几何意义以及反比例函数上的点的坐标特点、矩形的性质,掌握比例系数k的几何意义是在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解答本题的关键.
3、B
【分析】
①射线有方向性,描述射线时的第1个字母表示它的端点,所以①不对.
②不明确A、B、C是否在同一条直线上.所以错误.
③不知道C是否在线段AB上,错误.
④两点之间线段最短,正确.
【详解】
①射线AB和射线BA的端点不同不是同一条射线.所以错误.
②若AB和BC为不在同一条直线的两条线段,B就不是线段AC的中点.所以错误.
③若C点不在线段AB两点的连线上,那么C点就无法过线段AB.所以错误.
④两点之间线段最短,所以正确.
故选:B.
【点睛】
本题考查了射线、线段中点的含义.解题的关键是根据两点之间线段最短,射线、线段的中点的定义,角平分线的定义对各小题分析判断即可得解.
4、B
【分析】
直接根据题意得出函数关系式,进而得出函数图象.
【详解】
解:由题意可得:t=,是反比例函数,
故只有选项B符合题意.
故选:B.
【点睛】
此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.
5、B
【分析】
根据等式的性质逐项分析即可.
【详解】
A.由,两边都加1,得到,正确;
B.由,当c≠0时,两边除以c,得到,故不正确;
C.由,两边乘以c,得到,正确;
D.由,两边乘以2,得到,正确;
故选B.
【点睛】
本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.
6、D
【分析】
由这种工艺品的销售价每个降低x元,可得出每个工艺品的销售利润为(38-x-22)元,销售量为(160+×120)个,利用销售总利润=每个的销售利润×销售量,即可得出关于x的一元二次方程,此题得解.
【详解】
解:∵这种工艺品的销售价每个降低x元,
∴每个工艺品的销售利润为(38-x-22)元,销售量为(160+×120)个.
依题意得:(38-x-22)(160+×120)=3640.
故选:D.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
7、B
【分析】
根据题意分别求得第一次操作,第二次操作所增加的数,可发现是定值5,从而求得第101次操作后所有数之和为2+7+9+2022×5=10128.
【详解】
解:∵第一次操作增加数字:-2,7,
第二次操作增加数字:5,2,-11,9,
∴第一次操作增加7-2=5,
第二次操作增加5+2-11+9=5,
即,每次操作加5,第2022次操作后所有数之和为2+7+9+2022×5=10128.
故选:B.
【点睛】
此题主要考查了数字变化类,关键是找出规律,要求要有一定的解题技巧,解题的关键是能找到所增加的数是定值5.
8、C
【分析】
首先根据数轴的信息判断出有理数的大小关系,然后确定各绝对值中代数式的符号,即可根据绝对值的性质化简求解.
【详解】
解:由图可知:,
∴,,,,
∴,
故选:C.
【点睛】
本题考查数轴与有理数,以及化简绝对值,整式的加减运算等,理解数轴上表示的有理数的性质,掌握化简绝对值的方法以及整式的加减运算法则是解题关键.
9、D
【分析】
解两个不等式,再根据“大大小小找不着”可得m的取值范围.
【详解】
解:解不等式得:,
解不等式得:,
∵不等式组无解,
∴,
解得:,
故选:D.
【点睛】
此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则是解题关键.
10、B
【分析】
由折叠的特点可知,,又,则由同位角相等两直线平行易证,故,又为的中点可得,由相似的性质可得求解即可.
【详解】
解:沿折叠,使点落在点处,
,,
又∵,
∴,
∴,
,
又为的中点,AE=AE'
∴,
,
即,
.
故选:B.
【点睛】
本题考查折叠的性质,相似三角形的判定和性质,掌握“A”字形三角形相似的判定和性质为解题关键.
二、填空题
1、##
【分析】
如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.解直角三角形求出BH,CH即可解决问题.
【详解】
解:如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.
∵∠ABC=120°,
∴∠ABH=180°﹣∠ABC=60°,
∵AB=12,∠H=90°,
∴BH=AB•cos60°=6,AH=AB•sin60°=6,
∵EF⊥DF,DE=5,
∴sin∠ADE== ,
∴EF=4,
∴DF===3,
∵S△CDE=6,
∴ ·CD·EF=6,
∴CD=3,
∴CF=CD+DF=6,
∵tanC==,
∴ =,
∴CH=9,
∴BC=CH﹣BH=9﹣6.
故答案为:
【点睛】
本题主要考查了解直角三角形,根据题意构造合适的直角三角形是解题的关键.
2、b
【分析】
根据数轴,b>0,a<0,则a-b<0,化简绝对值即可.
【详解】
∵b>0,a<0,
∴a-b<0,
∴
=b-a+a
=b,
故答案为:b.
【点睛】
本题考查了绝对值的化简,正确确定字母的属性是化简的关键.
3、
【分析】
根据倒数的定义和绝对值的性质即可得出答案.
【详解】
解:的倒数是;绝对值等于3的数为±3,
故答案为:,±3.
【点睛】
此题考查了绝对值的性质、倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
4、或
【分析】
由题意依据垂直平分线性质和等边三角形性质以及60°直角三角形所对应的邻边是斜边的一半得出,,进而总结规律即可得出第n条线段的长.
【详解】
解:∵,,,
∴,
∵垂直平分AC,
∴,
∴,
∴,
同理,
,
可得第n条线段的长为:或.
故答案为:或.
【点睛】
本题考查图形规律,熟练掌握垂直平分线性质和等边三角形性质以及60°直角三角形所对应的邻边是斜边的一半是解题的关键.
5、2
【分析】
首先根据不等式求解不等式,再根据不等式的解集写出最大的整数解.
【详解】
解:移项,得:,
合并同类项,得:,
系数化成1得:,
则最大整数解是:2.
故答案是:2.
【点睛】
本题主要考查不等式的整数解,关键在于求解不等式.
三、解答题
1、
(1)每件乙种商品的价格为40元,每件甲种商品的价格为48元.
(2)最多可购买50件甲种商品.
【分析】
(1)设每件乙种商品的价格为x元,则每件甲种商品的价格为(x+8)元,根据数量=总价÷单价结合用1200元购买甲种口罩的件数恰好与用1000元购买乙种口罩的件数相同,即可得出关于x的分式方程,解之并检验后即可得出结论;
(2)设购买y件甲种商品,则购买(80-y)件乙种商品,根据总价=单价×购买数量结合投入的经费不超过3600元,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其内的最大正整数即可.
(1)
解:设每件乙种商品的价格为x元,则每件甲种商品的价格为(x+8)元,
根据题意得:,
解得:x=40,
经检验,x=40原方程的解,
∴x+8=48.
答:每件乙种商品的价格为40元,每件甲种商品的价格为48元.
(2)
解:设购买y件甲种商品,则购买(80-y)件乙种商品,
根据题意得:48y+40(80-y)≤3600,
解得:y≤50.
答:最多可购买50件甲种商品.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价,列出关于x的分式方程;(2)根据总价=单价×购买数量,列出关于y的一元一次不等式.
2、
(1),见解析;
(2);
(3)
【分析】
(1)根据成绩类别为“良”的人数除以其所占的百分数求解抽取学生总人数,再由总人数乘以成绩类别为“中”所占的比例求解成绩类别为“中”的人数,即可补全条形统计图;
(2)求出成绩类别为“优”所占的百分数即可求得其所对应的圆心角;
(3)根据家长总人数乘以良或良以上等级所占的百分数即可求解.
(1)
解:22÷44%=50(人),50×20%=10(人),
答:这次调查中被抽取学生的总人数为50人,补全条形统计图如图所示:
故答案为:50;
(2)
解:360°×=72°,
答:成绩类别为“优”的圆心角的度数为72°,
故答案为:72°;
(3)
解:750×=480(名),
答:估计本校七年级共有480名学生的数学成绩可达到良或良以上等级
【点睛】
本题考查条形统计图和扇形统计图的信息关联、用样本估计总体、能从条形统计图和扇形统计图中获取有效信息是解答的关键.
3、
【分析】
先去分母,去括号,然后移项合并同类项,系数化为1,最后进行检验.
【详解】
解:
去分母去括号得:
解得:
检验:当时,
∴分式方程的解为.
【点睛】
本题考查了解分式方程.解题的关键与难点在于将分式方程转化成整式方程.
4、见解析
【分析】
先证明为等腰直角三角形,得出,再证明,得出,即可证明.
【详解】
解:,
为等腰直角三角形,
,
又,
为等腰直角三角形,
,
,
,
,
,
,
平分.
【点睛】
本题考查了等腰直角三角形、三角形全等的判定及性质、角平分线,解题的关键是掌握三角形的全等的证明.
5、(1)见详解;(2)
【分析】
(1)根据线段垂直平分线的性质可知AB=AD,BC=CD,进而根据菱形的判定定理可求证;
(2)连接AE并延长,交BD的延长线于点G,连接FQ,由题意易得,则有,然后可得,则有,进而可得,然后证明,即有,最后根据勾股定理可求解.
【详解】
(1)证明:∵AC⊥BD,BO=DO,
∴AC垂直平分BD,
∴AB=AD,BC=CD,
∵BA=BC,
∴BA=AD=CD=BC,
∴四边形ABCD是菱形;
(2)解:,理由如下:
连接AE并延长,交BD的延长线于点G,连接FQ,如图所示:
由旋转的性质可得AP=AQ,
∵E是线段PQ的中点,
∴,
∵,,
∴,
∴,
∵,
∴,
∴,
设,
∵AP=AQ,E是线段PQ的中点,
∴,
∴,
∴,
∴,
∴,
∵,
∴(SAS),
∴,,
∴在Rt△QFP中,由勾股定理得:,
∵E是线段PQ的中点,
∴,
∴.
【点睛】
本题主要考查菱形的判定、等腰三角形的性质与判定、垂直平分线的性质定理、勾股定理及相似三角形的性质与判定,熟练掌握菱形的判定、等腰三角形的性质与判定、垂直平分线的性质定理、勾股定理及相似三角形的性质与判定是解题的关键.
【真题汇编】最新中考数学模拟专项测评 A卷(含答案及解析): 这是一份【真题汇编】最新中考数学模拟专项测评 A卷(含答案及解析),共25页。试卷主要包含了观察下列图形,下列各组图形中一定是相似形的是,下列计算中正确的是等内容,欢迎下载使用。
【真题汇编】最新中考数学模拟测评 卷(Ⅰ)(含答案解析): 这是一份【真题汇编】最新中考数学模拟测评 卷(Ⅰ)(含答案解析),共24页。试卷主要包含了二次函数 y=ax2+bx+c,下列说法正确的是,要使式子有意义,则等内容,欢迎下载使用。
【真题汇编】2022年中考数学模拟真题测评 A卷(含答案解析): 这是一份【真题汇编】2022年中考数学模拟真题测评 A卷(含答案解析),共25页。试卷主要包含了在以下实数中,在平面直角坐标系xOy中,点A,要使式子有意义,则,下列图形是中心对称图形的是.,下列命题中,真命题是等内容,欢迎下载使用。