【真题汇编】2022年中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解)
展开2022年中考数学备考真题模拟测评 卷(Ⅰ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知线段AB=7,点C为直线AB上一点,且AC∶BC=4∶3,点D为线段AC的中点,则线段BD的长为( )
A.5或18.5 B.5.5或7 C.5或7 D.5.5或18.5
2、将,2,,3按如图的方式排列,规定表示第m排左起第n个数,则与表示的两个数之积是( )
A. B.4 C. D.6
3、若关于x,y的方程是二元一次方程,则m的值为( )
A.﹣1 B.0 C.1 D.2
4、下列说法正确的有( )
①两点之间的所有连线中,线段最短;
②相等的角叫对顶角;
③过一点有且只有一条直线与已知直线平行;
④若AC=BC,则点C是线段AB的中点;
⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直.
A.1个 B.2个 C.3个 D.4个
5、对于反比例函数,下列结论错误的是( )
A.函数图象分布在第一、三象限
B.函数图象经过点(﹣3,﹣2)
C.函数图象在每一象限内,y的值随x值的增大而减小
D.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y2
6、下列各数中,是不等式的解的是( )
A.﹣7 B.﹣1 C.0 D.9
7、若单项式与是同类项,则的值是( )
A.6 B.8 C.9 D.12
8、如图,过圆心且互相垂直的两条直线将两个同心圆分成了若干部分,在该图形区域内任取一点,则该点取自阴影部分的概率是( )
A. B. C. D.
9、工人常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使CM=CN,过角尺顶点C作射线OC,由此作法便可得△NOC≌△MOC,其依据是( )
A.SSS B.SAS C.ASA D.AAS
10、在数2,-2,,中,最小的数为( )
A.-2 B. C. D.2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、数轴上表示数和的两点之间的距离为______.
2、已知代数式的值是2,则代数式的值为______.
3、如图,中,,,,将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是____________.
4、一名男生推铅球,铅球行进的高度y(单位:米)与水平距离x(单位:米)之间的关系为,则这名男生这次推铅球的成绩是______米.
5、点P为边长为2的正方形ABCD内一点,是等边三角形,点M为BC中点,N是线段BP上一动点,将线段MN绕点M顺时针旋转60°得到线段MQ,连接AQ、PQ,则的最小值为______.
三、解答题(5小题,每小题10分,共计50分)
1、用适当方法解下列一元二次方程:
(1)x2﹣6x=1;
(2)x2﹣4=3(x﹣2).
2、如图,点A、B在上,点P为外一点.
(1)请用直尺和圆规在优弧上求一点C,使CP平分(不写作法,保留作图痕迹);
(2)在(1)中,若AC恰好是的直径,设PC交于点D,过点D作,垂足为E.若,求弦BC的长.
3、如图,的长方形网格中,网格线的交点叫做格点.点A,B,C都是格点.请按要求解答下列问题:
平面直角坐标系xOy中,点A,B的坐标分别是(-3,1),(-1,4),
(1)①请在图中画出平面直角坐标系xOy;
②点C的坐标是 ,点C关于x轴的对称点的坐标是 ;
(2)设l是过点C且平行于y轴的直线,
①点A关于直线l的对称点的坐标是 ;
②在直线l上找一点P,使最小,在图中标出此时点P的位置;
③若Q(m,n)为网格中任一格点,直接写出点Q关于直线l的对称点的坐标(用含m,n的式子表示).
4、在数轴上,点A表示,点B表示20,动点P、Q分别从A、B两点同时出发.
(1)如图1,若P、Q相向而行6秒后相遇,且它们的速度之比是2:3(速度单位:1个单位长度/秒),则点P的速度为 个单位长度/秒,点Q的速度为 个单位长度/秒;
(2)如图2,若在原点O处放一块挡板.P、Q均以(1)中的速度同时向左运动,点Q在碰到挡板后(忽略球的大小)改变速度并向相反方向运动,设它们的运动时间为t(秒),试探究:
①若点Q两次经过数轴上表示12的点的间隔是5秒,求点Q碰到挡板后的运动速度;
②若点Q碰到挡板后速度变为原速度的2倍,求运动过程中P、Q两点到原点距离相等的时间t.
5、如图,在平面直角坐标系中,△ABC三个顶点的坐标为A(1,2),B(4,1),C(2,4).
(1)在图中画出△ABC关于y轴对称的图形△A′B′C′;并写出点B′的坐标.
(2)在图中x轴上作出一点P,使PA+PB的值最小.
-参考答案-
一、单选题
1、C
【分析】
根据题意画出图形,再分点C在线段AB上或线段AB的延长线上两种情况进行讨论.
【详解】
解:点C在线段AB上时,如图:
∵AB=7,AC∶BC=4∶3,
∴AC=4,BC=3,
∵点D为线段AC的中点,
∴AD=DC=2,
∴BD=DC+BC=5;
点C在线段AB的延长线上时,
∵AB=7,AC∶BC=4∶3,
设BC=3x,则AC=4x,
∴AC-BC=AB,即4x-3x=7,
解得x=7,
∴BC=21,则AC=28,
∵点D为线段AC的中点,
∴AD=DC=14,
∴BD=AD-AB=7;
综上,线段BD的长为5或7.
故选:C.
【点睛】
本题考查了两点间的距离,线段中点的定义,利用线段的比例得出AC、BC的长是解题关键,要分类讨论,以防遗漏.
2、A
【分析】
根据数的排列方法可知,第一排1个数,第二排2个数,第三排3个数,第四排4个数,…第(m-1)排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个循环,根据题目意思找出第m排第m个数后再计算
【详解】
解:(5,4)表示第5排从左向右第4个数,由图可知,(5,4)所表示的数是2;是第21排第7个数,则前20排有个数,则是第个数,
,2,,3四个数循环出现,
表示的数是
与表示的两个数之积是
故选A
【点睛】
本题考查了数字的变化规律,判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.
3、C
【分析】
根据二元一次方程的定义得出且,再求出答案即可.
【详解】
解:∵关于x,y的方程是二元一次方程,
∴且,
解得:m=1,
故选C.
【点睛】
本题考查了二元一次方程的定义,能熟记二元一次方程的定义是解此题的关键.
4、B
【分析】
根据线段的性质,对顶角相等的性质,平行公理,对各小题分析判断即可得解.
【详解】
解:①两点之间的所有连线中,线段最短,正确;
②相等的角不一定是对顶角,但对顶角相等,故本小题错误;
③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;
④若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误,
⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;
所以,正确的结论有①⑤共2个.
故选:B.
【点睛】
本题考查了平行公理,线段的性质,对顶角的判断,是基础题,熟记概念与性质是解题的关键.
5、D
【分析】
根据反比例函数的性质得出函数增减性以及所在象限和经过的点的特点分别分析得出即可.
【详解】
解:A、∵k=6>0,∴图象在第一、三象限,故A选项正确;
B、∵反比例函数,∴xy=6,故图象经过点(-3,-2),故B选项正确;
C、∵k>0,∴x>0时,y随x的增大而减小,故C选项正确;
D、∵不能确定x1和x2大于或小于0
∴不能确定y1、y2的大小,故错误;
故选:D.
【点睛】
本题考查了反比例函数(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
6、D
【分析】
移项、合并同类项,得到不等式的解集,再选取合适的x的值即可.
【详解】
解:移项得:,
∴9为不等式的解,
故选D.
【点睛】
本题考查的是解一元一次不等式,熟知去分母,去括号,移项,合并同类项,化系数为1是解一元一次不等式的基本步骤是解答此题的关键.
7、C
【分析】
根据同类项的定义可得,代入即可求出mn的值.
【详解】
解:∵与是同类项,
∴,
解得:m=3,
∴.
故选:C.
【点睛】
此题考查了同类项的定义,解题的关键是熟练掌握同类项的定义.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也相同,那么就称这两个单项式为同类项.
8、D
【分析】
旋转阴影部分后,阴影部分是一个半圆,根据概率公式可求解
【详解】
解:旋转阴影部分,如图,
∴该点取自阴影部分的概率是
故选:D
【点睛】
本题主要考查概率公式,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.
9、A
【分析】
利用边边边,可得△NOC≌△MOC,即可求解.
【详解】
解:∵OM=ON,CM=CN, ,
∴△NOC≌△MOC(SSS).
故选:A
【点睛】
本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.
10、A
【分析】
根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.
【详解】
解:∵,,
∴-2<<<2,
故选A.
【点睛】
本题考查了有理数的大小比较,熟练掌握有理数大小比较的方法是解答本题的关键.
二、填空题
1、##
【分析】
根据数轴上两点间的距离,可得﹣(﹣5)再计算,即可求解.
【详解】
解:﹣(﹣5)
=+5
=.
故答案为:
【点睛】
本题主要考查了数轴上两点间的距离,二次根式的减法运算,熟练掌握数轴上两点间的距离,二次根式的减法运算法则是解题的关键.
2、-1
【分析】
把变形为,然后把=2代入计算.
【详解】
解:∵代数式的值是2,
∴=2,
∴==3-4=-1.
故答案为:-1.
【点睛】
此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算,也可以运用整体代入的思想,本题就利用了整体代入进行计算.
3、
【分析】
如图(见解析),过点作轴于点,点作轴于点,设,从而可得,先利用勾股定理可得,从而可得,再根据旋转的性质可得,然后根据三角形全等的判定定理证出,最后根据全等三角形的性质可得,由此即可得出答案.
【详解】
解:如图,过点作轴于点,点作轴于点,
设,则,
在中,,
在中,,
,
解得,
,
由旋转的性质得:,
,
,
,
在和中,,
,
,
,
故答案为:.
【点睛】
本题考查了勾股定理、旋转、点坐标等知识点,画出图形,通过作辅助线,正确找出两个全等三角形是解题关键.
4、10
【分析】
将代入解析式求的值即可.
【详解】
解:∵
∴
解得:(舍去),
故答案为:10.
【点睛】
本题考查了二次函数的应用.解题的关键在于正确的解一元二次方程.所求值要满足实际.
5、
【分析】
如图,取的中点,连接,,,证明,进而证明在上运动, 且垂直平分,根据,求得最值,根据正方形的性质和勾股定理求得的长即可求得的最小值.
【详解】
解:如图,取的中点,连接,,,
将线段MN绕点M顺时针旋转60°得到线段MQ,
,
是等边三角形,
,
是的中点,是的中点
是等边三角形
,
即
在和中,
又
是的中点
点在上
是的中点,是等边三角,
又
垂直平分
即的最小值为
四边形是正方形,且
的最小值为
故答案为:
【点睛】
本题考查了正方形的性质等边三角形的性质,旋转的性质,全等三角形的性质与判定,勾股定理,垂直平分线的性质与判定,根据以上知识转化线段是解题的关键.
三、解答题
1、
(1),
(2)
【分析】
(1)利用配方法求解即可;
(2)利用因式分解法求解即可.
(1)
解:两边同加.得,
即,
两边开平方,得,
即,或,
∴,;
(2)
解:,
∴,
∴,
∴,或,
解得.
【点睛】
本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
2、
(1)见解析
(2)8
【分析】
(1)根据垂径定理,先作的垂直平分线,交于点,作射线交于点C,点即为所求;
(2)过点作于点,过点D作,则,证明,可得,进而可得的长.
(1)
如图所示,点即为所求,
(2)
如图,过点作于点,过点D作,则
是直径,
在和中
【点睛】
本题考查了垂径定理,作垂直平分线,全等三角形的性质与判定,平行线分线段成比例,直径所对的圆周角是直角,掌握垂径定理是解题的关键.
3、(1)作图见解析,(1,2),(1,-2);(2)①(5,1);②P点位置见解析;③(2-m,n)
【分析】
(1)由A、B点坐标即可知x轴和y轴的位置,即可从图像中得知C点坐标,而的横坐标不变,纵坐标为C点纵坐标的相反数.
(2)由C点坐标(1,2)可知直线l为x=1
①点是点A关于直线l的对称点,由横坐标和点A横坐标之和为2,纵坐标不变,即可求得坐标为(5,1).
②由①可得点A关于直线l的对称点,连接B交l于点P,由两点之间线段最短即可知点P为所求点.
③设点Q(m,n)关于l的对称点为(x,y),则有(m+x)÷2=1,y=n,即可求得对称点(2-m,n)
【详解】
(1)平面直角坐标系xOy如图所示
由图象可知C点坐标为(1,2)
点是 C点关于x轴对称得来的
则的横坐标不变,纵坐标为C点纵坐标的相反数
即点坐标为(1,-2).
(2)如图所示,由C点坐标(1,2)可知直线l为x=1
①A点坐标为(-3,1),
关于直线x=1对称的坐标横坐标与A点横坐标坐标和的一半为1,纵坐标不变
则为坐标为(5,1)
②连接①所得B,B交直线x=1于点P
由两点之间线段最短可知为B时最小
又∵点是点A关于直线l的对称点
∴
∴为B时最小
故P即为所求点.
③设任意格点Q(m,n)关于直线x=1的对称点为(x,y)
有(m+x)÷2=1,y=n
即x=2-m,y=n
则纵坐标不变,横坐标为原来横坐标相反数加2
即对称点坐标为(2-m,n).
【点睛】
本题考查了坐标轴中的对称点问题,熟悉坐标点关于轴对称的坐标变换,结合图象运用数形结合思想是解题的关键.
4、
(1)2,3
(2)①12个单位长度/秒;②2秒或秒
【分析】
(1)设P、Q的速度分别为2x,3x,由两点路程之和=两点之间的距离,列方程即可求解;
(2)解:①点Q第一次经过表示12的点开始到达原点用时4秒,再次到达表示12的点用时1秒,即可求解;
②分两种情况:当P、Q都向左运动时和当Q返回向右运动时即可求解.
(1)
解:设P、Q的速度分别为2x,3x,
由题意,得:6(2x+3x)=20-(-10),
解得:x=1,
故2x=2,3x=3,
故答案为:2,3;
(2)
解:①,.
答:点Q碰到挡板后的运动速度为12个单位长度/秒.
②当P、Q都向左运动时,
解得:.
当Q返回向右运动时,
解得:.
答:P、Q两点到原点距离相等时经历的时间为2秒或秒.
【点睛】
本题考查了数轴上两点的距离、数轴上点的表示、一元一次方程的应用,比较复杂,要认真理清题意,并注意数轴上的点,原点左边表示负数,右边表示正数,在数轴上,两点的距离等于任意两点表示的数的差的绝对值.
5、(1)作图见解析,点B′的坐标为(-4,1);(2)见解析
【分析】
(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;
(2)作出点A关于x轴的对称点A″,再连接A″B,与x轴的交点即为所求.
【详解】
解:(1)如图所示,△A′B′C′即为所求.
点B′的坐标为(-4,1);
(2)如图所示,点P即为所求.
【点睛】
本题主要考查了作图-轴对称变换,解题的关键是掌握轴对称变换的定义与性质,并据此得出变换后的对应点.注意:关于y轴对称的点,纵坐标相同,横坐标互为相反数.
【真题汇编】中考数学备考真题模拟测评 卷(Ⅰ)(含详解): 这是一份【真题汇编】中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共24页。试卷主要包含了若,则的值是,如图,在中,,,则的值为,下列式中,与是同类二次根式的是,下列命题中,真命题是等内容,欢迎下载使用。
【真题汇编】2022年中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解): 这是一份【真题汇编】2022年中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解),共32页。试卷主要包含了多项式去括号,得,下列计算错误的是,点P,若,,且a,b同号,则的值为等内容,欢迎下载使用。
【真题汇编】2022年广西省桂林市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解): 这是一份【真题汇编】2022年广西省桂林市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解),共21页。试卷主要包含了已知点A,在数2,-2,,中,最小的数为,下列说法正确的是等内容,欢迎下载使用。