【真题汇编】2022年北京市海淀区中考数学模拟考试 A卷(含答案及解析)
展开
这是一份【真题汇编】2022年北京市海淀区中考数学模拟考试 A卷(含答案及解析),共18页。试卷主要包含了不等式组的最小整数解是,观察下列图形,定义一种新运算等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、质检部门从同一批次1000件产品中随机抽取100件进行检测,检测出次品3件,由此估计这一批次产品中次品件数是( )
A.60B.30C.600D.300
2、若,则值为( )
A.B.C.-8D.
3、若(mx+8)(2﹣3x)中不含x的一次项,则m的值为( )
A.0B.3C.12D.16
4、不等式组的最小整数解是( )
A.5B.0C.D.
5、在数-12,π,-3.4,0,+3,中,属于非负整数的个数是( )
A.4B.3C.2D.1
6、0.1234567891011……是一个无理数,其小数部分是由1开始依次写下递增的正整数得到的,则该无理数小数点右边的第2022位数字是( )
A.0B.1C.2D.3
7、用配方法解一元二次方程x2+3=4x,下列配方正确的是( )
A.(x+2)2=2B.(x-2)2=7C.(x+2)2=1D.(x-2)2=1
8、观察下列图形:它们都是由同样大小的圆圈按一定的规律组成,其中第1个图形有5个圆圈,第2个图形有9个圆圈,第3个图形有13个圆圈,……,按此规律,第7个图形中圆圈的个数为( )
A.21B.25C.28D.29
9、定义一种新运算:,,则方程的解是( )
A.,B.,C.,D.,
10、已知,,且,则的值为( )
A.1或3B.1或﹣3C.﹣1或﹣3D.﹣1或3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、用长的铁丝,折成一个面积是的矩形,则这个矩形的长和宽分别为_______.
2、已知是方程的解,则a的值是______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
3、若,,则________.
4、规定运算*,使x*y=,如果1*2=1,那么3*4=___.
5、已知关于x,y的二元一次方程组的解x,y互为相反数,则a的值为______.
三、解答题(5小题,每小题10分,共计50分)
1、计算
(1);
(2).
2、(1)解方程:x²-2x-8=0;
(2)计算:5sin60°-cs245°.
3、解下列不等式(组),并把解集在数轴上表示出来;
(1);
(2);
(3);
(4).
4、在数轴上,点A表示,点B表示20,动点P、Q分别从A、B两点同时出发.
(1)如图1,若P、Q相向而行6秒后相遇,且它们的速度之比是2:3(速度单位:1个单位长度/秒),则点P的速度为 个单位长度/秒,点Q的速度为 个单位长度/秒;
(2)如图2,若在原点O处放一块挡板.P、Q均以(1)中的速度同时向左运动,点Q在碰到挡板后(忽略球的大小)改变速度并向相反方向运动,设它们的运动时间为t(秒),试探究:
①若点Q两次经过数轴上表示12的点的间隔是5秒,求点Q碰到挡板后的运动速度;
②若点Q碰到挡板后速度变为原速度的2倍,求运动过程中P、Q两点到原点距离相等的时间t.
5、定义一种新运算“”,规定:等式右边的运算就是加、减、乘、除四则运算,例如:,.
(1)求的值;
(2)若,求x的值.
-参考答案-
一、单选题
1、B
【分析】
根据样本的百分比为,用1000乘以3%即可求得答案.
【详解】
解:∵随机抽取100件进行检测,检测出次品3件,
∴估计1000件产品中次品件数是
故选B
【点睛】
本题考查了根据样本求总体,掌握利用样本估计总体是解题的关键.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、C
【分析】
根据实数的非负性,得a=-2,b=3,代入幂计算即可.
【详解】
∵,
∴a=-2,b=3,
∴== -8,
故选C.
【点睛】
本题考查了实数的非负性,幂的计算,熟练掌握实数的非负性是解题的关键.
3、C
【分析】
先计算多项式乘以多项式得到结果为,结合不含的一次项列方程,从而可得答案.
【详解】
解:(mx+8)(2﹣3x)
(mx+8)(2﹣3x)中不含x的一次项,
解得:
故选C
【点睛】
本题考查的是多项式乘法中不含某项,掌握“多项式乘法中不含某项即某项的系数为0”是解题的关键.
4、C
【分析】
分别求出各不等式的解集,再求出其公共解集,然后求出最小整数解即可.
【详解】
解:解不等式,得:,
解不等式,得:,
故不等式组的解集为:,
则该不等式组的最小整数解为:.
故选:C.
【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
5、C
【分析】
非负整数即指0或正整数,据此进行分析即可.
【详解】
解:在数-12,π,-3.4,0,+3,中,属于非负整数的数是:0,+3,共2个,
故选:C.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题主要考查了有理数.明确非负整数指的是正整数和0是解答本题的关键.
6、A
【分析】
一位数字9个,两位数字90个,三位数字900个,由此算出2022处于三位数字的第几个数字求得答案即可.
【详解】
∵共有9个1位数,90个2位数,900个3位数,
∴2022-9-90×2=1833,
∴1833÷3=611,
∵此611是继99后的第611个数,
∴此数是710,第三位是0,
故从左往右数第2022位上的数字为0,
故选:A.
【点睛】
此题主要考查了规律型:数字的变化类,根据已知得出变化规律是解题关键.
7、D
【分析】
根据题意将方程常数项移到右边,未知项移到左边,然后两边都加上4,左边化为完全平方式,右边合并即可得到答案.
【详解】
,
整理得:,
配方得:,即.
故选:D.
【点睛】
本题考查用配方法解一元二次方程,掌握配方法的步骤是解题的关键.
8、D
【分析】
根据已知图形得出第n个图形中圆圈数量为1+4×n=4n+1,再将n=7代入即可得.
【详解】
解:∵第1个图形中圆圈数量5=1+4×1,
第2个图形中圆圈数量9=1+4×2,
第3个图形中圆圈数量13=1+4×3,
……
∴第n个图形中圆圈数量为1+4×n=4n+1,
当n=7时,圆圈的数量为29,
故选:D.
【点睛】
本题考查规律型-图形变化类问题,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题.
9、A
【分析】
根据新定义列出关于x的方程,解方程即可.
【详解】
解:由题意得,方程,化为,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
整理得,,
,
∴,
解得:,,
故选A.
【点睛】
本题考查了公式法解一元二次方程,正确理解新运算、掌握公式法解一元二次方程的一般步骤是解题的关键.
10、A
【分析】
由题意利用乘方和绝对值求出x与y的值,即可求出x-y的值.
【详解】
解:∵,,
,
∴x=1,y=-2,此时x-y=3;
x=-1,y=-2,此时x-y=1.
故选:A.
【点睛】
此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键.
二、填空题
1、6cm,5cm
【分析】
设长是x厘米,则宽是(11-x)cm,根据矩形的面积公式即可列出方程求解.
【详解】
解:设长是x厘米,则宽是(11-x)cm,
根据题意得:x(11-x)=30,
整理得
解得:x1=5,x2=6,
则当x=5时,11-x=6(cm);
当x=6时,11-x=5(cm),
则长是6cm,宽是5cm,
故答案为6cm,5cm.
【点睛】
本题考查了一元二次方程的应用,熟练掌握长方形的面积公式、正确理解相等关系是解题的关键.
2、4
【分析】
把代入方程得到关于的一元一次方程,依次去括号,移项,合并同类项,系数化为1,即可得到答案.
【详解】
解:把代入方程得:
,
去括号得:,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
系数化为1得:,
故答案为:4.
【点睛】
本题考查了一元一次方程的解,解题的关键是正确掌握解一元一次方程的方法.
3、12
【分析】
由变形为,再把和代入求值即可.
【详解】
解:,,
.
故答案为:12.
【点睛】
本题主要考查幂的乘方与积的乘方,解题的关键是将变形为.
4、##
【分析】
根据新定义求解A的值,得新定义式为x*y=,然后再将代入代数式求解即可.
【详解】
解:∵1*2=1
∴
解得:A=4
∴x*y=
∴3*4
=
.
故答案为:.
【点睛】
本题考查了新定义.解题的关键在于正确的理解新定义式的含义.
5、-3
【分析】
两个方程相加得出3x+3y=3a+9,根据已知条件x,y互为相反数知x+y=0,得出关于a的方程,解方程即可.
【详解】
解:两个方程相加得:3x+3y=3a+9,
∵x、y互为相反数,
∴x+y=0,
∴3x+3y=0,
∴3a+9=0,
解得:a=-3,
故答案为:-3.
【点睛】
本题考查了二元一次方程组的解、互为相反数的性质;根据题意得出关于a的方程是解决问题的关· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
键.
三、解答题
1、
(1)7
(2)
【分析】
(1)先算乘除和绝对值,再算加减法;
(2)先算乘方,再算乘除,最后算加减.
【小题1】
解:
=
=;
【小题2】
=
=
=
【点睛】
本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.
2、(1);(2)
【分析】
(1)利用因式分解法求解;
(2)代入特殊角的三角函数值计算即可.
【详解】
解:(1)x²-2x-8=0
∴;
(2)原式=
=.
【点睛】
此题考查了计算能力,正确掌握解一元二次方程的方法及熟记特殊角的三角函数值是解题的关键.
3、
(1),数轴见解析
(2),数轴见解析
(3)-1<x≤2,数轴见解析
(4)x≤-10,数轴见解析
【分析】
(1)去括号,移项,合并同类项,然后把x的系数化为1,最后在数轴上表示即可;
(2)去分母,去括号,移项,合并同类项,然后把x的系数化为1,最后在数轴上表示即可;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(3)分别计算出两个不等式的解集,再确定出不等式组的解集,最后在数轴上表示;
(4)分别计算出两个不等式的解集,再确定出不等式组的解集,最后在数轴上表示;
【小题1】
解:,
去括号得:,
移项合并得:,
解得:,
在数轴上表示为:
【小题2】
,
去分母得:,
去括号得:,
移项合并得:,
在数轴上表示为:
【小题3】
,
由①得:x>-1,
由②得:x≤2,
不等式组的解集为:-1<x≤2,
在数轴上表示为:
【小题4】
,
由①得:x<-4,
由②得:x≤-10,
不等式组的解集为:x≤-10,
在数轴上表示为:
【点睛】
此题主要考查了不等式、不等式组的解法,以及不等式组解集在数轴上的表示方法,利用数形结合得出不等式组的解集是解题关键.
4、
(1)2,3
(2)①12个单位长度/秒;②2秒或秒
【分析】
(1)设P、Q的速度分别为2x,3x,由两点路程之和=两点之间的距离,列方程即可求解;
(2)解:①点Q第一次经过表示12的点开始到达原点用时4秒,再次到达表示12的点用时1秒,即可求解;
②分两种情况:当P、Q都向左运动时和当Q返回向右运动时即可求解.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)
解:设P、Q的速度分别为2x,3x,
由题意,得:6(2x+3x)=20-(-10),
解得:x=1,
故2x=2,3x=3,
故答案为:2,3;
(2)
解:①,.
答:点Q碰到挡板后的运动速度为12个单位长度/秒.
②当P、Q都向左运动时,
解得:.
当Q返回向右运动时,
解得:.
答:P、Q两点到原点距离相等时经历的时间为2秒或秒.
【点睛】
本题考查了数轴上两点的距离、数轴上点的表示、一元一次方程的应用,比较复杂,要认真理清题意,并注意数轴上的点,原点左边表示负数,右边表示正数,在数轴上,两点的距离等于任意两点表示的数的差的绝对值.
5、
(1)-43
(2)3
【分析】
(1)根据定义变形,计算可得结果;
(2)根据定义变形,得到方程,求出x值即可.
【小题1】
解:由题意可得:
=
=
=
=;
【小题2】
∵
=
=
=
=2
解得:x=3.
【点睛】
本题考查了新定义运算,理解定义,结合新定义,能将所求问题转化为一元一次方程是解题的关键.
相关试卷
这是一份【真题汇编】2022年北京市海淀区中考数学真题汇总 卷(Ⅱ)(精选),共23页。试卷主要包含了在数2,-2,,中,最小的数为,下列利用等式的性质,错误的是,下列二次根式的运算正确的是等内容,欢迎下载使用。
这是一份【真题汇编】2022年北京市海淀区中考数学五年真题汇总 卷(Ⅲ)(含答案及详解),共24页。试卷主要包含了在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
这是一份【真题汇编】2022年北京市海淀区中考数学五年真题汇总 卷(Ⅲ)(含答案详解),共24页。