![【真题汇编】2022年广东省清远市中考数学备考模拟练习 (B)卷(含答案解析)01](http://m.enxinlong.com/img-preview/2/3/12677049/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【真题汇编】2022年广东省清远市中考数学备考模拟练习 (B)卷(含答案解析)02](http://m.enxinlong.com/img-preview/2/3/12677049/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【真题汇编】2022年广东省清远市中考数学备考模拟练习 (B)卷(含答案解析)03](http://m.enxinlong.com/img-preview/2/3/12677049/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【真题汇编】2022年广东省清远市中考数学备考模拟练习 (B)卷(含答案解析)
展开2022年广东省清远市中考数学备考模拟练习 (B)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知二次函数,则关于该函数的下列说法正确的是( )
A.该函数图象与轴的交点坐标是
B.当时,的值随值的增大而减小
C.当取1和3时,所得到的的值相同
D.将的图象先向左平移两个单位,再向上平移5个单位得到该函数图象
2、如图,在中,.分别以点A,B为圆心,大于的长为半径画弧.两弧相交于点M和点N,作直线MN分别交BC、AB于点D和点E,若,则的度数是( )
A.22° B.24° C.26° D.28°
3、如图,中,,,AD平分交BC于点D,点E为AC的中点,连接DE,则的面积是( )
A.20 B.16 C.12 D.10
4、如图,点,为线段上两点,,且,设,则关于的方程的解是( )
A. B. C. D.
5、下列问题中,两个变量成正比例的是( )
A.圆的面积S与它的半径r
B.三角形面积一定时,某一边a和该边上的高h
C.正方形的周长C与它的边长a
D.周长不变的长方形的长a与宽b
6、如图,线段,延长到点,使,若点是线段的中点,则线段的长为( )
A. B. C. D.
7、如图,二次函数y=ax2+bx+c(a>0)的图像经过点A(﹣1,0),点B(m,0),点C(0,﹣m),其中2<m<3,下列结论:①2a+b>0,②2a+c<0,③方程ax2+bx+c=﹣m有两个不相等的实数根,④不等式ax2+(b﹣1)x<0的解集为0<x<m,其中正确结论的个数为( )
A.1 B.2 C.3 D.4
8、一把直尺与一块直角三角板按下图方式摆放,若,则( )
A.52° B.53° C.54° D.63°
9、如图,已知菱形OABC的顶点O(0,0),B(2,2),菱形的对角线的交于点D;若将菱形OABC绕点O逆时针旋转,每秒旋转45°,从如图所示位置起,经过60秒时,菱形的对角线的交点D的坐标为( )
A.(1,1) B.(﹣1,﹣1) C.(-1,1) D.(1,﹣1)
10、小明同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是( ).
分数 | 25 | 26 | 27 | 28 | 29 | 30 |
人数 | 3 | 5 | 10 | 14 | 12 | 6 |
A.该组数据的众数是28分 B.该组数据的平均数是28分
C.该组数据的中位数是28分 D.超过一半的同学体育测试成绩在平均水平以上
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某商品进价为26元,当每件售价为50元时,每天能售出40件,经市场调查发现每件售价每降低1元,则每天可多售出2件,当店里每天的利润要达到最大时,店主应把该商品每件售价降低______元.
2、给出下列程序:若输入的值为1时,输出值为1;若输入的值为时,输出值为;则当输入的值为8时,输出值为______.
3、某国产品牌的新能源汽车因物美价廉而深受大众喜爱,在某地区的销售量从1月份的10万辆增长到3月份的12.1万辆,则从1月份到3月份的月平均增长率为______.
4、如图,已知的三个角,,,,将绕点顺时针旋转得到,如果,那么_______.
5、如图,,,,,,则_______.
三、解答题(5小题,每小题10分,共计50分)
1、已知抛物线y=﹣x2+x.
(1)直接写出该抛物线的对称轴,以及抛物线与y轴的交点坐标;
(2)已知该抛物线经过A(3n+4,y1),B(2n﹣1,y2)两点.
①若n<﹣5,判断y1与y2的大小关系并说明理由;
②若A,B两点在抛物线的对称轴两侧,且y1>y2,直接写出n的取值范围.
2、为纪念一二·九运动86周年,我校组织八年级学生远赴新密参观豫西抗日纪念馆,学校负责人前去联系车辆,目前有甲、乙两种类型的客车供学校租用,据了解:3辆甲型客车与4辆乙型客车的总载客量为276人,2辆甲型客车与3辆乙型客车的总载客量为199人.
(1)请帮算一算:1辆甲型客车与1辆乙型客车的载客量分别是多少人?
(2)我校八年级学生共850人,拟租用甲、乙两型客车共20辆,一次将全部师生送到指定地点.若每辆甲型客车的租金为800元,每辆乙型客车的租金为1000元,请给出最节省费用的租车方案,并求出最低费用.
3、郑州到西安的路程为480千米,由于西安疫情紧张,郑州物资中心对西安进行支援.甲乙两辆物资车分别从郑州和西安出发匀速行驶相向而行.甲车到西安后立即返回,已知乙车的速度为每小时,且到郑州后停止行驶,进行消毒.它们离各自出发地的距离与行驶时间之间的关系如下图所示.
(1)______,______.
(2)请你求出甲车离出发地郑州的距离与行驶时间之间的函数关系式.
(3)求出点的坐标,并说明此点的实际意义.
(4)直接写出甲车出发多长时间两车相距40千米.
4、已知二元一次方程组,求的值.
5、在中,,,,点为直线上一点,且.
(1)如图1,点在线段延长线上,若,求的度数;
(2)如图2,与在图示位置时,求证:平分;
(3)如图3,若,,将图3中的(从与重合时开始)绕点按顺时针方向旋转一周,且点与点不重合,当为等腰三角形时,求的值.
-参考答案-
一、单选题
1、C
【分析】
把,代入,即可判断A,由二次函数的图象开口向上,对称轴是直线,即可判断B,当取和,代入,即可判断C,根据函数图象的平移规律,即可判断D.
【详解】
∵二次函数的图象与轴的交点坐标是,
∴A选项错误;
∵二次函数的图象开口向上,对称轴是直线,
∴当时,的值随值的增大而增大,
∴B选项错误;
∵当取和时,所得到的的值都是11,
∴C选项正确;
∵将的图象先向左平移两个单位,再向上平移个单位得到的图象,
∴D选项错误.
故选:C.
【点睛】
本题主要考查二次函数的图象和性质,理解二次函数的性质是解题的关键.
2、B
【分析】
由尺规作图痕迹可知MN垂直平分AB,得到DA=DB,进而得到∠DAB=∠B=50°,再利用等腰三角形的性质和三角形内角和计算出∠BAC,然后计算∠BAC-∠DAB即可.
【详解】
解:∵,
∴∠B=∠C=52°,∠BAC=180°-∠B-∠C=180°-52°-52°=76°,
由尺规作图痕迹可知:MN垂直平分AB,
∴DA=DB,
∴∠DAB=∠B=52°,
∴∠CAD=∠BAC-∠DAB=76°-52°=24°.
故选:B.
【点睛】
本题考查了线段垂直平分线的尺规作图及等腰三角形的性质等,熟练掌握线段垂直平分线的性质及等腰三角形的性质是解决本类题的关键.
3、D
【分析】
根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据勾股定理得出AD的长,从而求出三角形ABD的面积,再根据三角形的中线性质即可得出答案;
【详解】
解:∵AB=AC,AD平分∠BAC,BC=8,
∴AD⊥BC,,
∴,
∴,
∵点E为AC的中点,
∴,
故选:D
【点睛】
本题考查了勾股定理,三角形的面积公式,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.
4、D
【分析】
先根据线段的和差运算求出的值,再代入,解一元一次方程即可得.
【详解】
解:,
,
,
,
解得,
则关于的方程为,
解得,
故选:D.
【点睛】
本题考查了线段的和差、一元一次方程的应用,熟练掌握方程的解法是解题关键.
5、C
【分析】
分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可.
【详解】
解: 所以圆的面积S与它的半径r不成正比例,故A不符合题意;
所以三角形面积一定时,某一边a和该边上的高h不成正比例,故B不符合题意;
所以正方形的周长C与它的边长a成正比例,故C符合题意;
所以周长不变的长方形的长a与宽b不成正比例,故D不符合题意;
故选C
【点睛】
本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键.
6、B
【分析】
先求出,再根据中点求出,即可求出的长.
【详解】
解:∵,
∴,,
∵点是线段的中点,
∴,
,
故选:B.
【点睛】
本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.
7、C
【分析】
利用二次函数的对称轴方程可判断①,结合二次函数过 可判断②,由与有两个交点,可判断③,由过原点,对称轴为 求解函数与轴的另一个交点的横坐标,结合原二次函数的对称轴及与轴的交点坐标,可判断④,从而可得答案.
【详解】
解: 二次函数y=ax2+bx+c(a>0)的图像经过点A(﹣1,0),点B(m,0),
抛物线的对称轴为:
2<m<3,则
而图象开口向上
即 故①符合题意;
二次函数y=ax2+bx+c(a>0)的图像经过点A(﹣1,0),
则
则
故②符合题意;
与有两个交点,
方程ax2+bx+c=﹣m有两个不相等的实数根,故③符合题意;
关于对称,
过原点,对称轴为
该函数与抛物线的另一个交点的横坐标为:
不等式ax2+(b﹣1)x<0的解集不是0<x<m,故④不符合题意;
综上:符合题意的有①②③
故选:C
【点睛】
本题考查的是二次函数的图象与性质,利用二次函数的图象判断及代数式的符号,二次函数与一元二次方程,不等式之间的关系,熟练的运用数形结合是解本题的关键.
8、B
【分析】
过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.
【详解】
解:如图,过三角板的直角顶点作直尺两边的平行线,
∵直尺的两边互相平行,
∴,,
∴,
∴,
故选B.
【点睛】
本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.
9、B
【分析】
分别过点和点作轴于点,作轴于点,根据菱形的性质以及中位线的性质求得点的坐标,进而计算旋转的度数,7.5周,进而根据中心对称求得点旋转后的D坐标
【详解】
如图,分别过点和点作轴于点,作轴于点,
∴,
∵四边形为菱形,
∴点为的中点,
∴点为的中点,
∴,,
∵,
∴;
由题意知菱形绕点逆时针旋转度数为:,
∴菱形绕点逆时针旋转周,
∴点绕点逆时针旋转周,
∵,
∴旋转60秒时点的坐标为.
故选B
【点睛】
根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.
10、B
【分析】
由众数的含义可判断A,由平均数的含义可判断B,D,由中位数的含义可判断C, 从而可得答案.
【详解】
解:由分出现次,出现的次数最多,所以该组数据的众数是28分,故A不符合题意;
该组数据的平均数是
故B符合题意;
50个数据,按照从小到大的顺序排列,第25个,26个数据为28分,28分,
所以中位数为:(分),故C不符合题意;
因为超过平均数的同学有:
所以超过一半的同学体育测试成绩在平均水平以上,故D不符合题意;
故选B
【点睛】
本题考查的是平均数,众数,中位数的含义,掌握“根据平均数,众数,中位数的含义求解一组数据的平均数,众数,中位数”是解本题的关键.
二、填空题
1、2
【分析】
设每件商品售价降低元,则每天的利润为:,然后求解计算最大值即可.
【详解】
解:设每件商品售价降低元
则每天的利润为:,
∵
∴当时,最大为968元
故答案为2.
【点睛】
本题考查了一元二次函数的应用.解题的关键在于确定函数解析式.
2、3
【分析】
设输出的值为y,根据程序可得计算法则:,根据待定系数法确定k,b的值,再将8代入即可.
【详解】
解:设输出的值为,根据图示可得计算法则为,
若输入的值为1时,输出值为1;若输入的值为时,输出值为,
,解得,
,
当时,,
3、10%
【分析】
可先表示出2月份的销量,那么2月份的销量×(1+增长率)=12.1,把相应数值代入即可求解.
【详解】
解:2月份的销量为10×(1+x),3月份的销量在2月份销量的基础上增加x,
为10×(1+x)×(1+x),根据题意得,
10(1+x)2=121.
解得,(舍去),
∴从1月份到3月份的月平均增长率为10%
故答案为:10%
【点睛】
考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.
4、度
【分析】
根据求出,即可求出旋转角的度数.
【详解】
解:绕点顺时针旋转得到,
则,
,
故答案为:.
【点睛】
本题考查了旋转的性质,解题关键是明确旋转角度为的度数.
5、17
【分析】
由“”可证,可得,,即可求解.
【详解】
解:,
,
在和中,
,
,
,,
,
故答案为:17.
【点睛】
本题考查了全等三角形的判定和性质,解题的关键是证明三角形全等.
三、解答题
1、
(1)直线x=1,(0,0)
(2)①y1<y2,理由见解析;②﹣1<n<﹣
【分析】
(1)由对称轴公式即可求得抛物线的对称轴,令x=0,求得函数值,即可求得抛物线与y轴的交点坐标;
(2)①由n<﹣5,可得点A,点B在对称轴直线x=1的左侧,由二次函数的性质可求解;
(3)分两种情况讨论,列出不等式组可求解.
(1)
∵y=﹣x2+x,
∴对称轴为直线x=﹣=1,
令x=0,则y=0,
∴抛物线与y轴的交点坐标为(0,0);
(2)
xA﹣xB=(3n+4)﹣(2n﹣1)=n+5,xA﹣1=(3n+4)﹣1=3n+3=3(n+1),xB﹣1=(2n﹣1)﹣1=2n﹣2=2(n﹣1).
①当n<﹣5时,xA﹣1<0,xB﹣1<0,xA﹣xB<0.
∴A,B两点都在抛物线的对称轴x=1的左侧,且xA<xB,
∵抛物线y=﹣x2+x开口向下,
∴在抛物线的对称轴x=1的左侧,y随x的增大而增大.
∴y1<y2;
②若点A在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,
由题意可得,
∴不等式组无解,
若点B在对称轴直线x=1的左侧,点A在对称轴直线x=1的右侧时,
由题意可得:,
∴﹣1<n<﹣,
综上所述:﹣1<n<﹣.
【点睛】
本题考查了抛物线与y轴的交点,二次函数的性质,一元一次不等式组的应用,利用分类讨论思想解决问题是本题的关键.
2、
(1)1辆甲型客车与1辆乙型客车的载客量分别是32,45人
(2)最节省费用的租车方案为甲型车3辆,乙型车17辆,最低费用为19400元
【分析】
(1)设1辆甲型客车与1辆乙型客车的载客量分别是人,由题意知计算求解即可.
(2)设租用甲型客车辆,乙型客车辆,由题意知,解得:,费用,可知 时费用最低,进而得出结果.
(1)
解:设1辆甲型客车与1辆乙型客车的载客量分别是人
由题意知
解得
∴1辆甲型客车与1辆乙型客车的载客量分别是人.
(2)
解:设租用甲型客车辆,乙型客车辆
由题意知
解得:
费用
费用最低时,
辆
元
∴最节省费用的租车方案为甲型车3辆,乙型车17辆,最低费用为19400元.
【点睛】
本题考查了二元一次方程组的应用,一元一次不等式的应用等知识.解题的关键在于正确的列方程和不等式.
3、
(1)8,6.5
(2)
(3)点P的坐标为(5,360),点P的实际意义是:甲车在行驶5小时后,甲乙两车分别距自己的出发地的距离为360千米
(4)当甲车出发2.4小时或2.8小时或小时两车相距40千米
【分析】
(1)先根据题意判断出直线的函数图像时乙车的,折线的函数图像时甲车的,然后求出甲车的速度即可求出甲返回郑州的时间,即可求出m;然后算出乙车从西安到郑州需要的时间即可求出n;
(2)分甲从郑州到西安和从西安到郑州两种情况求解即可;
(3)根据函数图像可知P点代表的实际意义是:在P点时,甲乙两车距自己的出发地的距离相同,由此列出方程求解即可;
(4)分情况:当甲车在去西安的途中,甲乙两车相遇前,当甲车在去西安的途中,甲乙两车相遇后,当甲车在返回郑州的途中,乙未到郑州时,当甲车在返回郑州的途中,乙已经到郑州时,四种情况讨论求解即可.
(1)
解:∵甲乙两辆物资车分别从郑州和西安出发匀速行驶相向而行.甲车到西安后立即返回,乙车到底郑州后立即停止,
∴直线的函数图像是乙车的,折线的函数图像是甲车的,
由函数图像可知,甲车4小时从郑州行驶到西安走了480千米,
∴甲车的速度=480÷4=120千米/小时,
∴甲车从西安返回郑州需要的时间=480÷120=4小时,
∴m=4+4=8;
∵乙车的速度为80千米/小时,
∴乙车从西安到达郑州需要的时间=480÷80=6小时,
∵由函数图像可知乙车是在甲车出发0.5小时后出发,
∴n=0.5+6=6.5,
故答案为:8,6.5;
(2)
解:当甲车从郑州去西安时,
∵甲车的速度为120千米/小时,
∴甲车与郑州的距离,
当甲车从西安返回郑州时,
∵甲车的速度为120千米/小时,
∴甲车与郑州的距离,
∴;
(3)
解:根据函数图像可知P点代表的实际意义是:在P点时,甲乙两车距自己的出发地的距离相同,
∵此时甲车处在返程途中,
∴,
解得,
∴,
∴点P的坐标为(5,360),
∴点P的实际意义是:甲车在行驶5小时后,甲乙两车分别距自己的出发地的距离为360千米;
(4)
解:当甲车在去西安的途中,甲乙两车相遇前,
由题意得:,
解得;
当甲车在去西安的途中,甲乙两车相遇后,
由题意得:,
解得;
当甲车在返回郑州的途中,乙未到郑州时,
由题意得:
解得(不符合题意,舍去),
当甲车在返回郑州的途中,乙已经到郑州时,
由题意得:
解得;
综上所述,当甲车出发2.4小时或2.8小时或小时两车相距40千米.
【点睛】
本题主要考查了从函数图像获取信息,一元一次方程的应用,正确理解题意是解题的关键.
4、4
【分析】
将两式相加,直接得出x+y的值即可.
【详解】
解:,
(1)(2)得:,
.
【点睛】
本题考查了二元一次方程组的解法,解题的关键是把(x+y)看做一个整体,两式相加直接得到x+y的值.
5、
(1)25°
(2)见解析
(3)16或或
【分析】
(1)根据,得出,再根据,得,最后根据即可得出;
(2)证明出即可求解;
(3)分类讨论:①,重合,直接得出;②,,再在中利用勾股定理求解;③根据,得,再在中利用勾股定理求解.
(1)
解:如图:
,
,
,
,
,
,
,
,
;
(2)
证:
,
在与,
,
,
,
平分;
(3)
解:如图:①
,重合,
②
,,
,
,
在中,,
,
在中,
,
③
,
,
,
,
在中,,,,
在中,,
,
,
.
【点睛】
本题属于几何变换综合题,旋转、考查了等腰三角形的性质、三角形全等的判定及性质、三角形内角和,勾股定理,,解题的关键是利用特殊三角形的性质解决问题,学会用转化的思想思考问题,属于中考压轴题.
【真题汇总卷】2022年广东省清远市中考数学模拟真题 (B)卷(含答案及解析): 这是一份【真题汇总卷】2022年广东省清远市中考数学模拟真题 (B)卷(含答案及解析),共29页。试卷主要包含了下列说法中不正确的是,下列方程中,解为的方程是等内容,欢迎下载使用。
【真题汇总卷】2022年广东省清远市中考数学备考模拟练习 (B)卷(含详解): 这是一份【真题汇总卷】2022年广东省清远市中考数学备考模拟练习 (B)卷(含详解),共25页。试卷主要包含了已知,则的值为,和按如图所示的位置摆放,顶点B等内容,欢迎下载使用。
【真题汇编】2022年云南省昆明市中考数学备考模拟练习 (B)卷(含答案解析): 这是一份【真题汇编】2022年云南省昆明市中考数学备考模拟练习 (B)卷(含答案解析),共29页。试卷主要包含了下列命题错误的是,下列说法中错误的是等内容,欢迎下载使用。