【难点解析】2022年江西省上饶市中考数学模拟真题练习 卷(Ⅱ)(含答案详解)
展开2022年江西省上饶市中考数学模拟真题练习 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一张正方形纸片经过两次对折,并在如图所示的位置上剪去一个小正方形,打开后的图形是( )
A. B.
C. D.
2、如图,与交于点,与互余,,则的度数为( )
A. B. C. D.
3、已知正五边形的边长为1,则该正五边形的对角线长度为( ).
A. B. C. D.
4、已知,则的值为( )
A. B. C. D.
5、学生玩一种游戏,需按墙上的空洞造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,一个几何体恰好无缝隙地以3个不同形状的“姿势”穿过“墙”上的3个空洞,则该几何体为( )
A. B. C. D.
6、下列格点三角形中,与右侧已知格点相似的是( )
A. B.
C. D.
7、如图,的三个顶点和它内部的点,把分成个互不重叠的小三角形;的三个顶点和它内部的点,,把分成个互不重叠的小三角形;的三个顶点和它内部的点,,,把分成个互不重叠的小三角形;的三个顶点和它内部的点,,,…,,把分成( )个互不重叠的小三角形.
A. B. C. D.
8、一圆锥高为4cm,底面半径为3cm,则该圆锥的侧面积为( )
A. B. C. D.
9、如图,表示绝对值相等的数的两个点是( )
A.点C与点B B.点C与点D C.点A与点B D.点A与点D
10、如图,在的方格纸中,每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形.点E是格点四边形ABCD的AB边上一动点,连接ED,EC,若格点与相似,则的长为( )
A. B. C.或 D.或
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、将如图所示的平面展开图折叠成正方体后,相对面上两个数的和都相等,则____.
2、如果在A点处观察B点的仰角为,那么在B点处观察A点的俯角为_______(用含的式子表示)
3、如图,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若这两个正方形的边长满足a+b=10,ab=20,则阴影部分的面积为____.
4、计算:=_____.
5、如图所示,在平面直角坐标系中,.在y轴找一点P,使得的周长最小,则周长最小值为_______
三、解答题(5小题,每小题10分,共计50分)
1、观察并找出规律:从2开始,连续的偶数相加,它们的和的情况如下表:
(1)当m=8时,和S的等式为_________
(2)按此规律计算:
①2+4+6+…+200值;
②82+84+86+…+204值.
2、已知平行四边形的顶点、分别在其的边、上,顶点、在其的对角线上.
图1 图2
(1)如图1,求证:;
(2)如图2,若,,求的值;
(3)如图1,当,,求时,求的值.
3、对于平面直角坐标系中的任意一点,给出如下定义:记,,将点与称为点的一对“相伴点”.
例如:点的一对“相伴点”是点与.
(1)点的一对“相伴点”的坐标是______与______;
(2)若点的一对“相伴点”重合,则的值为______;
(3)若点的一个“相伴点”的坐标为,求点的坐标;
(4)如图,直线经过点且平行于轴.若点是直线上的一个动点,点与是点的一对“相伴点”,在图中画出所有符合条件的点,组成的图形.
4、如图,在的网格纸中,点O和点A都是格点,以O为圆心,OA为半径作圆.请仅用无刻度的直尺完成以下画图:(不写画法,保留作图痕迹.)
(1)在图①中画⊙O的一个内接正八边形ABCDEFGH;
(2)在图②中画⊙O的一个内接正六边形ABCDEF.
5、计算:.
-参考答案-
一、单选题
1、A
【分析】
由平面图形的折叠及图形的对称性展开图解题.
【详解】
由第一次对折后中间有一个矩形,排除B、C;
由第二次折叠矩形正在折痕上,排除D;
故选:A.
【点睛】
本题考查的是学生的立体思维能力及动手操作能力,关键是由平面图形的折叠及图形的对称性展开图解答.
2、B
【分析】
先由与互余,求解 再利用对顶角相等可得答案.
【详解】
解:与互余,
,
,
,
,
故选:B.
【点睛】
本题考查的是互余的含义,角的和差关系,对顶角的性质,掌握“两个角互余的含义”是解本题的关键.
3、C
【分析】
如图,五边形ABCDE为正五边形, 证明 再证明可得:设AF=x,则AC=1+x,再解方程即可.
【详解】
解:如图,五边形ABCDE为正五边形,
∴五边形的每个内角均为108°,
∴∠BAG=∠ABF=∠ACB=∠CBD= 36°,
∴∠BGF=∠BFG=72°,
设AF=x,则AC=1+x,
解得:,
经检验:不符合题意,舍去,
故选C
【点睛】
本题考查的是正多边形的性质,等腰三角形的判定与性质,相似三角形的判定与性质,证明是解本题的关键.
4、A
【分析】
由设,代入计算求解即可.
【详解】
解:∵
∴设
∴
故选:A
【点睛】
本题主要考查发比例的性质,熟练掌握比例的性质是解答本题的关键.
5、A
【分析】
看哪个几何体的三视图中有长方形,圆,及三角形即可.
【详解】
解:、三视图分别为正方形,三角形,圆,故选项符合题意;
、三视图分别为三角形,三角形,圆及圆心,故选项不符合题意;
、三视图分别为正方形,正方形,正方形,故选项不符合题意;
、三视图分别为三角形,三角形,矩形及对角线,故选项不符合题意;
故选:A.
【点睛】
本题考查了三视图的相关知识,解题的关键是判断出所给几何体的三视图.
6、A
【分析】
根据题中利用方格点求出的三边长,可确定为直角三角形,排除B,C选项,再由相似三角形的对应边成比例判断A、D选项即可得.
【详解】
解:的三边长分别为:,
,,
∵,
∴为直角三角形,B,C选项不符合题意,排除;
A选项中三边长度分别为:2,4,,
∴,
A选项符合题意,
D选项中三边长度分别为:,,,
∴,
故选:A.
【点睛】
题目主要考查相似三角形的性质及勾股定理的逆定理,理解题意,熟练掌握运用相似三角形的性质是解题关键.
7、B
【分析】
从前三个内部点可总结规律,即可得三角形内部有n个点时有个互不重叠的小三角形.
【详解】
由,,三个内部点可总结出规律每增加一个内部点三角形内部增加两个小三角形,
∴的三个顶点和它内部的点,,,…,,把分成个互不重叠的小三角形.
故选:B.
【点睛】
本题考查了图形类规律问题,图形规律就是根据所给出的图形的结构特特征,需要认真分析观察、分析、归纳,从图形所蕴含的数字信息总结出一般的数式规律,然后再应用规律做题.用代数式表示数字或图形的规律,有其自身的解题规律,掌握其正确的解题方法,这类题目将会迎刃而解.
8、C
【分析】
根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,扇形的面积公式求解.
【详解】
解: ∵一圆锥高为4cm,底面半径为3cm,
∴圆锥母线=,
∴圆锥的侧面积=(cm2).
故选C.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
9、D
【分析】
根据数轴可以把A、B、C、D四个点表示的数写出来,然后根据写出的数即可得到那两个数的绝对值相等,从而可以得到问题的答案.
【详解】
解:由数轴可得,点A、B、C、D在数轴上对应的数依次是:−3,2,-1,3,
则|−3|=|3|,
故点A与点D表示的数的绝对值相等,
故选:D.
【点睛】
本题考查数轴,解题的关键是利用数形结合的思想找出所求问题需要的条件.
10、C
【分析】
分∽和∽两种情况讨论,求得AE和BE的长度,根据勾股定理可求得DE和EC的长度,由此可得的长.
【详解】
解:由图可知DA=3,AB=8,BC=4,AE=8-EB,∠A=∠B=90°,
若∽,
则,即,
解得或,
当时,,,
,
当时,,,
,
若∽,
则,即,解得(不符合题意,舍去),
故或,
故选:C.
【点睛】
本题考查相似三角形的性质和判定,勾股定理,能结合图形,分类讨论是解题关键.注意不要忽略了题干中格点三角形的定义.
二、填空题
1、
【分析】
利用正方体及其表面展开图的特点,结合相对面上两个数之和相等,列方程即可得到结论.
【详解】
解:由正方体的展开图的特点可得:
相对,相对,相对,
相对面上两个数的和都相等,
解得:
故答案为:
【点睛】
本题考查的是正方体展开图相对面上的数字,掌握“正方体的展开图的特点”是解本题的关键.
2、
【分析】
根据题意作出图形,然后找出相应的仰角和俯角,利用平行线的性质即可求解.
【详解】
解:如图所示:在A点处观察B点的仰角为,即,
∵,
∴,
∴在B点处观察A点的俯角为,
故答案为:.
【点睛】
题目主要考查仰角和俯角及平行线的性质,理解题意,作出相应的图形是解题关键.
3、20
【分析】
根据阴影部分的面积等于两个正方形的面积之和减去空白的面积,列式化简,再把a+b=10,ab=20代入计算即可.
【详解】
解:∵大小两个正方形边长分别为a、b,
∴阴影部分的面积S=a2+b2a2(a+b)ba2b2ab;
∵a+b=10,ab=20,
∴Sa2b2ab
(a+b)2ab
10220
=20.
故答案为:20.
【点睛】
本题考查了完全平方公式的几何背景,熟练掌握完全平方公式及正方形和三角形的面积计算是解题的关键.
4、16
【分析】
依题意,按照幂的定义及形式,对底数进行转换,利用其性质计算即可;
【详解】
由题知,,∴ ;
故填:;
【点睛】
本题主要考查幂的定义性质及其底数的灵活转换,关键在熟练其定义;
5、
【分析】
作点B关于y轴的对称点C,连接AC,与y轴的交点即为满足条件的点P,由勾股定理求出AC、AB的长,即可求得周长最小值.
【详解】
作点B关于y轴的对称点C,则点C的坐标为,连接AC,与y轴的交点即为满足条件的点P,如图所示
由对称的性质得:PB=PC
∴AB+PA+PB=AB+PA+PC≥AB+AC
即当点P在AC上时,周长最小,且最小值为AB+AC
由勾股定理得:,
∴周长最小值为
故答案为:
【点睛】
本题考查了点与坐标,两点间距离最短,对称的性质,勾股定理等知识,作点关于x轴的对称点是关键.
三、解答题
1、
(1)8×9=72
(2)①10100 ②8866
【分析】
(1)仔细观察给出的等式可发现从2开始连续2个偶数和是2×3,连续3个,4个偶数和为3×4,4×5,当有m个从2开始的连续偶数相加是,式子就应该表示成:2+4+6+…+2m=m(m+1),从而推出当m=8时,和的值;
(2)①直接根据(1)中规律计算即可;
②用2+4+6+…+82+84+86+…+204的和减去2+4+6+…+80的和即可.
(1)
解:∵2+2=2×2,
2+4=6=2×3=2×(2+1),
2+4+6=12=3×4=3×(3+1),
2+4+6+8=20=4×5=4×(4+1),
…,
∴2+4+6+…+2m=m(m+1),
∴m=8时,和为:8×9=72;
故答案为:72;
(2)
①2+4+6+…+200
=100×101,
=10100;
②82+84+86+…+204 =(2+4+6+…+82+84+86+…+204)-(2+4+6+…+80)
=102×103-40×41
=10506-1640
=8866.
【点睛】
此题主要考查了数字规律,要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值是解题关键.
2、
(1)证明见解析
(2)
(3)
【分析】
(1)根据四边形,四边形都是平行四边形,得到和,然后证明,即可证明出;
(2)作于M点,设,首先根据,证明出四边形和四边形都是矩形,然后根据同角的余角相等得到,然后根据同角的三角函数值相等得到,即可表示出BF和FH的长度,进而可求出的值;
(3)过点E作于M点,首先根据题意证明出,得到,,然后根据等腰三角形三线合一的性质得到,设,根据题意表示出,,过点E作,交BD于N,然后由证明出,设,根据相似三角形的性质得出,然后由30°角所对直角边是斜边的一半得到,进而得到,解方程求出,然后表示出,根据勾股定理得到EH和EF的长度,即可求出的值.
(1)
解:∵四边形EFGH是平行四边形
∴
∴
∵四边形ABCD是平行四边形
∴
∴
在和中
∴
∴
∴
∴;
(2)
解:如图所示,作于M点,设
∵四边形和四边形都是平行四边形,
∴四边形和四边形都是矩形
∴
∴
∵
∴,
∴
∴
∴
∵
∴
由(1)得:
∴
∴;
(3)
解:如图所示,过点E作于M点
∵四边形ABCD是平行四边形
∴
∵
∴,即
∵
∴
∴
∴
∴
设
∵
∴
∴
∴
由(1)得:
∴
∴
过点E作,交BD于N
∵
∴
∴
∴
设
∴
∴
∵
∴
∵
∴
∴
∵
∴
∴
∴
解得:或(舍去)
∴
由勾股定理得:
∴.
【点睛】
此题考查了矩形的性质,相似三角形的性质和判定,勾股定理等知识,解题的关键是熟练掌握矩形的性质,相似三角形的性质和判定,勾股定理,根据题意正确作出辅助线求解.
3、
(1),
(2)-4
(3)或
(4)见解析
【分析】
(1)根据相伴点的含义可得,,从而可得答案;
(2)根据相伴点的含义可得,再解方程可得答案;
(3)由点的一个“相伴点”的坐标为,则另一个的坐标为 设点,再根据相伴点的含义列方程组,再解方程组即可;
(4)设点,可得,,可得点的一对“相伴点”的坐标是与,再画出所在的直线即可.
(1)
解:,
,,
点的一对“相伴点”的坐标是与,
故答案为:,;
(2)
解:点,
,,
点的一对“相伴点”的坐标是和,
点的一对“相伴点”重合,
,
,
故答案为:;
(3)
解:设点,
点的一个“相伴点”的坐标为,则另一个的坐标为
或,
或,
或;
(4)
解:设点,
,,
点的一对“相伴点”的坐标是与,
当点的一个“相伴点”的坐标是,
点在直线上,
当点的一个“相伴点”的坐标是,
点在直线上,
即点,组成的图形是两条互相垂直的直线与直线,如图所示,
【点睛】
本题考查的是新定义情境下的坐标与图形,平行线于坐标轴的直线的特点,二元一次方程组的应用,理解新定义再进行计算或利用新定义得到方程组与图形是解本题的关键.
4、
(1)见解析
(2)见解析
【分析】
(1)在图①中画⊙O的一个内接正八边形ABCDEFGH即可;
(2)在图②中画⊙O的一个内接正六边形ABCDEF即可.
(1)
解:如图,正八边形ABCDEFGH即为所求:
(2)
解:如图,正六边形ABCDEF即为所求:
【点睛】
本题考查了作图-应用与设计作图、正多边形和圆,解决本题的关键是准确画图.
5、
【分析】
根据完全平方公式及平方差公式,然后再合并同类项即可.
【详解】
解:原式
.
【点睛】
本题考查了完全平方公式及平方差公式,属于基础题,计算过程中细心即可.
【难点解析】湖南省怀化市中考数学模拟真题练习 卷(Ⅱ)(含答案详解): 这是一份【难点解析】湖南省怀化市中考数学模拟真题练习 卷(Ⅱ)(含答案详解),共33页。试卷主要包含了下列语句中,不正确的是,利用如图①所示的长为a,单项式的次数是等内容,欢迎下载使用。
【真题汇总卷】2022年江西省上饶市中考数学模拟真题练习 卷(Ⅱ)(含详解): 这是一份【真题汇总卷】2022年江西省上饶市中考数学模拟真题练习 卷(Ⅱ)(含详解),共22页。试卷主要包含了和按如图所示的位置摆放,顶点B,下列说法中不正确的是,下列式子运算结果为2a的是.等内容,欢迎下载使用。
【难点解析】中考数学模拟真题 (B)卷(含答案详解): 这是一份【难点解析】中考数学模拟真题 (B)卷(含答案详解),共22页。试卷主要包含了下列说法中,不正确的是,下列利用等式的性质,错误的是,下列方程组中,二元一次方程组有,二次函数y=,如图,OM平分,,,则.,下列命题中,是真命题的是等内容,欢迎下载使用。