


【难点解析】2022年湖南省武冈市中考数学模拟测评 卷(Ⅰ)(含答案解析)
展开2022年湖南省武冈市中考数学模拟测评 卷(Ⅰ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是( )
A. B.四边形EFGH是菱形
C. D.
2、不等式组的最小整数解是( )
A.5 B.0 C. D.
3、用配方法解一元二次方程x2+3=4x,下列配方正确的是( )
A.(x+2)2=2 B.(x-2)2=7 C.(x+2)2=1 D.(x-2)2=1
4、观察下列图形:它们都是由同样大小的圆圈按一定的规律组成,其中第1个图形有5个圆圈,第2个图形有9个圆圈,第3个图形有13个圆圈,……,按此规律,第7个图形中圆圈的个数为( )
A.21 B.25 C.28 D.29
5、若单项式与是同类项,则的值是( )
A.6 B.8 C.9 D.12
6、下列各组数据中,能作为直角三角形的三边长的是( )
A.,, B.4,9,11 C.6,15,17 D.7,24,25
7、已知ax2+24x+b=(mx﹣3)2,则a、b、m的值是( )
A.a=64,b=9,m=﹣8 B.a=16,b=9,m=﹣4
C.a=﹣16,b=﹣9,m=﹣8 D.a=16,b=9,m=4
8、如图,点P是▱ABCD边AD上的一点,E,F分别是BP,CP的中点,已知▱ABCD面积为16,那么△PEF的面积为( )
A.8 B.6 C.4 D.2
9、若,则的值是( )
A. B.0 C.1 D.2022
10、下列计算正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、多项式2a2b-abc的次数是______.
2、在,,,,中,负数共有______个.
3、2.25的倒数是__________.
4、如图,在一张矩形纸片ABCD中,AB=30cm,将纸片对折后展开得到折痕EF.点P为BC边上任意一点,若将纸片沿着DP折叠,使点C恰好落在线段EF的三等分点上,则BC的长等于_________cm.
5、如图,在△ABC中,∠ABC=120°,AB=12,点D在边AC上,点E在边BC上,sin∠ADE=,ED=5,如果△ECD的面积是6,那么BC的长是_____.
三、解答题(5小题,每小题10分,共计50分)
1、用一面足够长的墙为一边,其余各边用总长42米的围栏建成如图所示的生态园,中间用围栏隔开.由于场地限制,垂直于墙的一边长不超过7米.(围栏宽忽略不计)
(1)若生态园的面积为144平方米,求生态园垂直于墙的边长;
(2)生态园的面积能否达到150平方米?请说明理由.
2、对任意一个三位数(,,,a,b,c为整数),如果其个位上的数字与百位上的数字之和等于十位数上的数字,则称M为“万象数”,现将“万象数”M的个位作为十位,十位作为百位,百位作为个位,得到一个数N,并规定,我们称新数为M的“格致数”.例如154是一个“万象数”,将其个位作为十位,十位作为百位,百位作为个位,得到一个,,所以154的“格致数”为387.
(1)填空:当时,______;当时,______;
(2)求证:对任意的“万象数”M,其“格致数”都能被9整除;
(3)已知某“万象数”M的“格致数”为,既是72的倍数又是完全平方数,求出所有满足条件的“万象数”M.(完全平方数:如,,,,……,我们称0、1、4、9、16……叫完全平方数)
3、解方程:.
4、在中,,,点E在射线CB上运动.连接AE,将线段AE绕点E顺时针旋转90°得到EF,连接CF.
(1)如图1,点E在点B的左侧运动.
①当,时,则___________°;
②猜想线段CA,CF与CE之间的数量关系为____________.
(2)如图2,点E在线段CB上运动时,第(1)问中线段CA,CF与CE之间的数量关系是否仍然成立?如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.
5、给出如下定义:我们把有序实数对(a,b,c)叫做关于x的二次多项式ax2+bx+c的特征系数对,把关于x的二次多项式ax2+bx+c叫做有序实数对(a,b,c)的特征多项式.
(1)关于x的二次多项式3x2+2x-1的特征系数对为________;
(2)求有序实数对(1,4,4)的特征多项式与有序实数对(1,-4,4)的特征多项式的乘积;
(3)若有序实数对(p,q,-1)的特征多项式与有序实数对(m,n,-2)的特征多项式的乘积的结果为2x4+x3-10x2-x+2,直接写出(4p-2q-1)(2m-n-1)的值为________.
-参考答案-
一、单选题
1、C
【分析】
由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.
【详解】
解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.
∵AB和AE都是⊙O的切线,点G、H分别是切点,
∴AG=AH,∠GAF=∠HAF,
∴∠GAF=∠HAF=∠DAE=30°,
∴∠BAE=2∠DAE,故A正确,不符合题意;
延长EF与AB交于点N,如图:
∵OF⊥EF,OF是⊙O的半径,
∴EF是⊙O的切线,
∴HE=EF,NF=NG,
∴△ANE是等边三角形,
∴FG//HE,FG=HE,∠AEF=60°,
∴四边形EFGH是平行四边形,∠FEC=60°,
又∵HE=EF,
∴四边形EFGH是菱形,故B正确,不符合题意;
∵AG=AH,∠GAF=∠HAF,
∴GH⊥AO,故D正确,不符合题意;
在Rt△EFC中,∠C=90°,∠FEC=60°,
∴∠EFC=30°,
∴EF=2CE,
∴DE=2CE.
∵在Rt△ADE中,∠AED=60°,
∴AD=DE,
∴AD=2CE,故C错误,符合题意.
故选C.
【点睛】
本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.
2、C
【分析】
分别求出各不等式的解集,再求出其公共解集,然后求出最小整数解即可.
【详解】
解:解不等式,得:,
解不等式,得:,
故不等式组的解集为:,
则该不等式组的最小整数解为:.
故选:C.
【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
3、D
【分析】
根据题意将方程常数项移到右边,未知项移到左边,然后两边都加上4,左边化为完全平方式,右边合并即可得到答案.
【详解】
,
整理得:,
配方得:,即.
故选:D.
【点睛】
本题考查用配方法解一元二次方程,掌握配方法的步骤是解题的关键.
4、D
【分析】
根据已知图形得出第n个图形中圆圈数量为1+4×n=4n+1,再将n=7代入即可得.
【详解】
解:∵第1个图形中圆圈数量5=1+4×1,
第2个图形中圆圈数量9=1+4×2,
第3个图形中圆圈数量13=1+4×3,
……
∴第n个图形中圆圈数量为1+4×n=4n+1,
当n=7时,圆圈的数量为29,
故选:D.
【点睛】
本题考查规律型-图形变化类问题,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题.
5、C
【分析】
根据同类项的定义可得,代入即可求出mn的值.
【详解】
解:∵与是同类项,
∴,
解得:m=3,
∴.
故选:C.
【点睛】
此题考查了同类项的定义,解题的关键是熟练掌握同类项的定义.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也相同,那么就称这两个单项式为同类项.
6、D
【分析】
由题意直接依据勾股定理的逆定理逐项进行判断即可.
【详解】
解:A.∵,
∴,,为边不能组成直角三角形,故本选项不符合题意;
B.∵42+92≠112,
∴以4,9,11为边不能组成直角三角形,故本选项不符合题意;
C.∵62+152≠172,
∴以6,15,17为边不能组成直角三角形,故本选项不符合题意;
D.∵72+242=252,
∴以7,24,25为边能组成直角三角形,故本选项符合题意;
故选:D.
【点睛】
本题考查勾股定理的逆定理,能熟记勾股定理的逆定理是解答此题的关键,注意掌握如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.
7、B
【分析】
将根据完全平方公式展开,进而根据代数式相等即可求解
【详解】
解:∵ ,ax2+24x+b=(mx﹣3)2,
∴
即
故选B
【点睛】
本题考查了完全平方公式,掌握完全平方公式是解题的关键.
8、D
【分析】
根据平行线间的距离处处相等,得到,根据EF是△PBC的中位线,得到△PEF∽△PBC,EF=,得到计算即可.
【详解】
∵点P是▱ABCD边AD上的一点,且 ▱ABCD面积为16,
∴;
∵E,F分别是BP,CP的中点,
∴EF∥BC,EF=,
∴△PEF∽△PBC,
∴,
∴,
故选D.
【点睛】
本题考查了平行四边形的性质,三角形中位线定理,三角形相似的判定和性质,熟练掌握中位线定理,灵活运用三角形相似的性质是解题的关键.
9、C
【分析】
先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可.
【详解】
解:∵,
∴a-2=0,b+1=0,
∴a=2,b=-1,
∴=,
故选C.
【点睛】
本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键.
10、D
【分析】
根据合并同类项法则合并同类项,进行计算即可.
【详解】
A.,故选项A错误;
B. 不是同类项,不能合并,故选项B错误;
C.,故选项C错误;
D.,故选项D正确.
故选D.
【点睛】
本题考查了同类项和合并同类项,掌握同类项定义,所含字母相同,相同字母的指数也相同的项是同类项,合并同类项法则只把同类项的系数相加减字母和字母的指数不变是解题的关键.
二、填空题
1、3
【分析】
利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数,据此求解即可.
【详解】
解:多项式2a2b-abc的次数是3.
故答案为:3.
【点睛】
本题主要考查了多项式,正确把握多项式的项数和次数确定方法是解题关键.
2、3
【分析】
将各数化简,即可求解.
【详解】
解:∵,,,,,
∴负数有,,,共3个.
故答案为:3
【点睛】
本题主要考查了乘方的运算,绝对值的性质,有理数的分类,熟练掌握乘方的运算,绝对值的性质,有理数的分类是解题的关键.
3、
【分析】
2.25的倒数为,计算求解即可.
【详解】
解:由题意知,2.25的倒数为
故答案为:.
【点睛】
本题考查了倒数.解题的关键在于理解倒数的定义.
4、或
【分析】
分为将纸片沿纵向对折,和沿横向对折两种情况,利用折叠的性质,以及勾股定理解答即可
【详解】
如图:当将纸片沿纵向对折
根据题意可得:
为的三等分点
在中有
如图:当将纸片沿横向对折
根据题意得:,
在中有
为的三等分点
故答案为:或
【点睛】
本题考查了矩形的性质,折叠的性质,以及勾股定理解直角三角形,解题关键是分两种情况作出折痕,考虑问题应全面,不应丢解.
5、##
【分析】
如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.解直角三角形求出BH,CH即可解决问题.
【详解】
解:如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.
∵∠ABC=120°,
∴∠ABH=180°﹣∠ABC=60°,
∵AB=12,∠H=90°,
∴BH=AB•cos60°=6,AH=AB•sin60°=6,
∵EF⊥DF,DE=5,
∴sin∠ADE== ,
∴EF=4,
∴DF===3,
∵S△CDE=6,
∴ ·CD·EF=6,
∴CD=3,
∴CF=CD+DF=6,
∵tanC==,
∴ =,
∴CH=9,
∴BC=CH﹣BH=9﹣6.
故答案为:
【点睛】
本题主要考查了解直角三角形,根据题意构造合适的直角三角形是解题的关键.
三、解答题
1、
(1)6米
(2)不能达到,理由见解析
【分析】
(1)设生态园垂直于墙的边长为x米,则可得生态园平行于墙的边长,从而由面积关系即可得到方程,解方程即可;
(2)方法与(1)相同,判断所得方程有无解即可.
(1)
设生态园垂直于墙的边长为x米,则x≤7,生态园平行于墙的边长为(42-3x)米
由题意得:x(42-3x)=144
即
解得:(舍去)
即生态园垂直于墙的边长为6米.
(2)
不能,理由如下:
设生态园垂直于墙的边长为y米,则生态园平行于墙的边长为(42-3y)米
由题意得:y(42-3y)=150
即
由于
所以此一元二次方程在实数范围内无解
即生态园的面积不能达到150平方米.
【点睛】
本题考查了一元二次方程在实际生活中的应用,理解题意并根据等量关系正确列出方程是解题的关键.
2、
(1)
(2)证明见解析
(3)或.
【分析】
(1)根据新定义分别求解即可;
(2)设“万象数”为 则其为 则再计算其“格致数”,再利用乘法的分配律进行变形即可证明结论;
(3)由是的倍数,可得是的倍数,结合的范围可得 从而得到或或或或 再求解方程符合条件的解,可得的值,结合是完全平方数,从而可得答案.
(1)
解:由新定义可得:
当时,
故答案为:
(2)
解:设“万象数”为 则其为
则
而
所以其“格致数”
所以其“格致数”都能被9整除.
(3)
解:是的倍数,
是的倍数,
是的倍数,
,,,a,b,c为整数,
或或或或
或或或或或
而,
的值为:或或或或或
是完全平方数,
的值为:或.
【点睛】
本题考查的是新定义运算的理解与运用,同时考查了二元一次方程的非负整数解问题,理解新定义,逐步分析与运算是解本题的关键.
3、.
【分析】
先计算右边算式,再把系数化为1即可得答案.
【详解】
,
.
【点睛】
本题考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键.
4、
(1)①;②
(2)不成立,
【分析】
(1)①由直角三角形的性质可得出答案;
②过点E作ME⊥EC交CA的延长线于M,由旋转的性质得出AE=EF,∠AEF=90°,得出∠AEM=∠CEF,证明△FEC≌△AEM(SAS),由全等三角形的性质得出CF=AM,由等腰直角三角形的性质可得出结论;
(2)过点F作FH⊥BC交BC的延长线于点H.证明△ABE≌△EHF(AAS),由全等三角形的性质得出FH=BE,EH=AB=BC,由等腰直角三角形的性质可得出结论;
(1)
①∵,,,
∴,
∵sin∠EAB=
∴,
故答案为:30°;
②.
如图1,过点E作交CA的延长线于M,
∵,,
∴,∴,
∴,
∴,
∵将线段AE绕点E顺时针旋转90°得到EF,
∴,,
∴,
在△FEC和△AEM中
,
∴,
∴,
∴,
∵为等腰直角三角形,
∴,
∴;
故答案为:;
(2)
不成立.
如图2,过点F作交BC的延长线于点H.
∴,,
∵,
∴,
在△FEC和△AEM中
,
∴,
∴,,
∴,
∴为等腰直角三角形,
∴.
又∵,
即.
【点睛】
本题考查了旋转的性质,解直角三角形,等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的面积,熟练掌握旋转的性质是解题的关键.
5、
(1)(3,2,-1)
(2)
(3)-6
【分析】
(1)根据特征系数对的定义即可解答;
(2)根据特征多项式的定义先写出多项式,然后再根据多项式乘多项式进行计算即可;
(3)根据特征多项式的定义先写出多项式,然后再令x=-2即可得出答案.
(1)
解:关于x的二次多项式3x2+2x-1的特征系数对为 (3,2,-1),
故答案为:(3,2,-1);
(2)
解:∵有序实数对(1,4,4)的特征多项式为:x2+4x+4,
有序实数对(1,-4,4)的特征多项式为:x2-4x+4,
∴(x2+4x+4)(x2-4x+4)
=x4-4x3+4x2+4x3-16x2+16x+4x2-16x+16
=x4-8x2+16;
(3)
解:根据题意得(px2+qx-1)(mx2+nx-2)=2x4+x3-10x2-x+2,
令x=-2,
则(4p-2q-1)(4m-2n-2)=2×16-8-10×4+2+2,
∴(4p-2q-1)(4m-2n-2)=32-8-40+2+2,
∴(4p-2q-1)(4m-2n-2)=-12,
∴(4p-2q-1)(2m-n-1)=-6,
故答案为:-6.
【点睛】
本题考查了多项式乘多项式,新定义问题,给x赋予特殊值-2是解题的关键.
【中考专题】湖南省武冈市中考数学模拟真题测评 A卷(含答案详解): 这是一份【中考专题】湖南省武冈市中考数学模拟真题测评 A卷(含答案详解),共24页。试卷主要包含了下列各式中,不是代数式的是,如图,某汽车离开某城市的距离y,下列图标中,轴对称图形的是,如图,等内容,欢迎下载使用。
【难点解析】湖南省武冈市中考数学模拟专项测试 B卷(含详解): 这是一份【难点解析】湖南省武冈市中考数学模拟专项测试 B卷(含详解),共29页。试卷主要包含了如图,下列条件中不能判定的是等内容,欢迎下载使用。
【难点解析】湖南省株洲市中考数学模拟真题测评 A卷(含答案解析): 这是一份【难点解析】湖南省株洲市中考数学模拟真题测评 A卷(含答案解析),共32页。试卷主要包含了下列函数中,随的增大而减小的是等内容,欢迎下载使用。