![【难点解析】2022年福建省晋江市中考数学三年真题模拟 卷(Ⅱ)(含详解)第1页](http://m.enxinlong.com/img-preview/2/3/12676636/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【难点解析】2022年福建省晋江市中考数学三年真题模拟 卷(Ⅱ)(含详解)第2页](http://m.enxinlong.com/img-preview/2/3/12676636/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【难点解析】2022年福建省晋江市中考数学三年真题模拟 卷(Ⅱ)(含详解)第3页](http://m.enxinlong.com/img-preview/2/3/12676636/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【难点解析】2022年福建省晋江市中考数学三年真题模拟 卷(Ⅱ)(含详解)
展开
这是一份【难点解析】2022年福建省晋江市中考数学三年真题模拟 卷(Ⅱ)(含详解),共25页。试卷主要包含了已知4个数,如图所示,该几何体的俯视图是等内容,欢迎下载使用。
2022年福建省晋江市中考数学三年真题模拟 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在数-12,π,-3.4,0,+3,中,属于非负整数的个数是( )A.4 B.3 C.2 D.12、已知线段AB、CD,AB<CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是( )A.点B在线段CD上(C、D之间)B.点B与点D重合C.点B在线段CD的延长线上D.点B在线段DC的延长线上3、二次函数y=ax2+bx+c(a≠0)的图象如图所示,与x轴交于点(−1,0)和(x,0),且1<x<2,以下4个结论:①ab<0;②2a+b=0;③3a+c>0;④a+b<am2+bm(m<−1);其中正确的结论个数为( )A.4 B.3 C.2 D.14、一个不透明的盒子里装有a个除颜色外完全相同的球,其中有6个白球,每次将球充分搅匀后,任意摸出1个球记下颜色然后再放回盒子里,通过如此大量重复试验,发现摸到白球的频率稳定在0.4左右,则a的值约为( )A.10 B.12 C.15 D.185、若二次函数的图象经过点,则a的值为( )A.-2 B.2 C.-1 D.16、如图,点A的坐标为,点B是x轴正半轴上的动点,以AB为腰作等腰直角,使,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )A. B.C. D.7、已知4个数:,,,,其中正数的个数有( )A.1 B. C.3 D.48、如图,AB是的直径,CD是的弦,且,,,则图中阴影部分的面积为( )A. B. C. D.9、如图所示,该几何体的俯视图是A. B.C. D.10、已知和是同类项,那么的值是( )A.3 B.4 C.5 D.6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC中,∠ABC=120°,AB=12,点D在边AC上,点E在边BC上,sin∠ADE=,ED=5,如果△ECD的面积是6,那么BC的长是_____.2、在统计学中,样本的方差可以近似地反映总体的______.(在①“集中趋势”,②“波动大小”,③“平均值”,④“最大值”中选择合适的序号填写在横线上)3、规定运算*,使x*y=,如果1*2=1,那么3*4=___.4、如图,BD是△ABC的角平分线,E是AB上的中点,已知△ABC的面积是12cm2,BC:AB=19:17,则△AED面积是 _____.5、如果分式的值为零,那么的值是________.三、解答题(5小题,每小题10分,共计50分)1、如图,长方形ABCD中,AB>AD,把长方形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)图中有 个等腰三角形;(请直接填空,不需要证明)(2)求证:△ADE≌△CED;(3)请证明点F在线段AC的垂直平分线上.2、已知的立方根是-3,的算术平方根是4,c是的整数部分,求的平方根.3、如图①,,AD与BC相交于点M,点H在BD上.求证:.小明的部分证明如下:证明:∵,∴,∴同理可得:______,……(1)请完成以上的证明(可用其他方法替换小明的方法);(2)求证:;(3)如图②,正方形DEFG的顶点D、G分别在的边AB、AC上,E、F在边BC上,,交DG于M,垂足为N,求证:.4、解方程(1)(2)5、已知点P(m,4)在反比例函数的图像上,正比例函数的图像经过点P和点Q(6,n).(1)求正比例函数的解析式;(2)求P、Q两点之间的距离.(3)如果点M在y轴上,且MP=MQ,求点M的坐标. -参考答案-一、单选题1、C【分析】非负整数即指0或正整数,据此进行分析即可.【详解】解:在数-12,π,-3.4,0,+3,中,属于非负整数的数是:0,+3,共2个,故选:C.【点睛】本题主要考查了有理数.明确非负整数指的是正整数和0是解答本题的关键.2、A【分析】根据叠合法比较大小的方法始点重合,看终点可得点B在线段CD上,可判断A,点B与点D重合,可得线段AB=CD,可判断B,利用AB>CD,点B在线段CD的延长线上,可判断C, 点B在线段DC的延长线上,没有将AB移动到CD的位置,无法比较大小可判断D.【详解】解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,点B在线段CD上(C、D之间),故选项A正确,点B与点D重合,则有AB=CD与AB<CD不符合,故选项B不正确;点B在线段CD的延长线上,则有AB>CD,与AB<CD不符合,故选项C不正确;点B在线段DC的延长线上,没有将AB移动到CD的位置,故选项D不正确.故选:A.【点睛】本题考查线段的比较大小的方法,掌握叠合法比较线段大小的方法与步骤是解题关键.3、B【分析】由开口方向、对称轴的位置可判断结论①;由对称轴的位置可判断结论②;由x=-1函数值为0以及对称轴的位置可判断结论③;由增减性可判断结论④.【详解】解:由图象可知,a>0,b<0,∴ab<0,①正确;因与x轴交于点(−1,0)和(x,0),且1<x<2,所以对称轴为直线−<1,∴−b<2a,∴2a+b>0,②错误;由图象可知x=−1,y=a−b+c=0,又2a>−b,2a+a+c>−b+a+c,∴3a+c>0,③正确;由增减性可知m<−1,am2+bm+c>0,当x=1时,a+b+c<0,即a+b<am2+bm,④正确.综上,正确的有①③④,共3个,故选:B.【点睛】本题考查了二次函数图象与系数之间的关系,熟练掌握二次函数的开口方向,对称轴,函数增减性并会综合运用是解决本题的关键.4、C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.4左右得到比例关系,列出方程求解即可.【详解】解:由题意可得,,解得,a=15.经检验,a=15是原方程的解故选:C.【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据白球的频率得到相应的等量关系.5、C【分析】把(-2,-4)代入函数y=ax2中,即可求a.【详解】解:把(-2,-4)代入函数y=ax2,得4a=-4,解得a=-1.故选:C.【点睛】本题考查了点与函数的关系,解题的关键是代入求值.6、A【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【详解】解:作AD∥x轴,作CD⊥AD于点D,如图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOB=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选:A.【点睛】本题考查动点问题的函数图象,全等三角形的性质和判定,等腰三角形的定义.解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.7、C【分析】化简后根据正数的定义判断即可.【详解】解:=1是正数,=2是正数,=1.5是正数,=-9是负数,故选C.【点睛】本题考查了有理数的乘方、相反数、绝对值的意义,以及正负数的意义,正确化简各数是解答本题的关键.8、C【分析】如图,连接OC,OD,可知是等边三角形,,,,计算求解即可.【详解】解:如图连接OC,OD∵∴是等边三角形∴由题意知,故选C.【点睛】本题考查了扇形的面积,等边三角形等知识.解题的关键在于用扇形表示阴影面积.9、D【分析】根据俯视图是从物体上面向下面正投影得到的投影图,即可求解.【详解】解:根据题意得:D选项是该几何体的俯视图.故选:D【点睛】本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.10、C【分析】把字母相同且相同字母的指数也分别相同的几个项叫做同类项,根据同类项的定义即可解决.【详解】由题意知:n=2,m=3,则m+n=3+2=5故选:C【点睛】本题主要考查了同类项的概念,掌握同类项的概念是解答本题的关键.二、填空题1、##【分析】如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.解直角三角形求出BH,CH即可解决问题.【详解】解:如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.∵∠ABC=120°,∴∠ABH=180°﹣∠ABC=60°,∵AB=12,∠H=90°,∴BH=AB•cos60°=6,AH=AB•sin60°=6,∵EF⊥DF,DE=5,∴sin∠ADE== ,∴EF=4,∴DF===3,∵S△CDE=6,∴ ·CD·EF=6,∴CD=3,∴CF=CD+DF=6,∵tanC==,∴ =,∴CH=9,∴BC=CH﹣BH=9﹣6.故答案为:【点睛】本题主要考查了解直角三角形,根据题意构造合适的直角三角形是解题的关键.2、②【分析】根据方差反映数据的波动大小解答.【详解】解:在统计学中,样本的方差可以近似地反映总体的波动大小,故答案为:②.【点睛】此题考查了方差的性质:方差反映了数据的波动差异水平是否稳定.3、##【分析】根据新定义求解A的值,得新定义式为x*y=,然后再将代入代数式求解即可.【详解】解:∵1*2=1∴解得:A=4∴x*y=∴3*4=.故答案为:.【点睛】本题考查了新定义.解题的关键在于正确的理解新定义式的含义.4、【分析】根据角平分线的性质得出DF=DG,再由三角形面积计算即可得答案.【详解】解:作DG⊥AB,交AB的延长线于点D,作DF⊥BC, ∴BD是△ABC的角平分线,∴DF=DG,∵BC:AB=19:17,设DF=DG=h,BC=19a,AB=17a,∵△ABC的面积是12cm2,∴,∴,∴36ah=24,∴ah=,∵E是AB上的中点,∴AE=,∴△AED面积=×h=(cm2).故答案为:cm2.【点睛】本题考查了根据角平分线的性质和三角形面积的计算,做题的关键是掌握角平分线的性质.5、【分析】根据分式的值为零的条件可以求出x的值.【详解】解:根据题意得:且,解得.故答案为:.【点睛】考查了分式的值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.三、解答题1、(1)2(2)证明见解析(3)证明见解析【分析】(1)由题意知CE=BC=AD,∠EAC=∠BAC=∠DCA,有△ACF为等腰三角形;在和中,,知,有∠DEA=∠EDC,有△DEF为等腰三角形;(2)在和中,,可得;(3)由于,,,有,,故,进而可得出结果.(1)解:有△ACF和△DEF共2个等腰三角形证明如下:由折叠的性质可知CE=BC=AD,∠EAC=∠BAC∵∴∠EAC=∠DCA∴△ACF为等腰三角形;在和中∵∴∴∠DEA=∠EDC∴△DEF为等腰三角形;故答案为:2.(2)证明:∵四边形ABCD是长方形∴,由折叠的性质可得:,∴,在和中,∴.(3)证明:由(1)得∴,即∴又∵∴∴∴点F在线段AC的垂直平分线上.【点睛】本题考查了几何图形折叠的性质,矩形,等腰三角形的判定与性质,三角形全等,垂直平分线等知识.解题的关键在于灵活运用知识.2、±4【分析】根据的立方根是-3,可求得a的值;根据的算术平方根是4及已经求得的a的值,可求得b的值;再由c是的整数部分可求得c的值,则可求得的值,从而求得结果.【详解】∵的立方根是-3∴∴∵的算术平方根是4∴即∴∵c是的整数部分,且∴∴∵∴的平方根为±4【点睛】本题考查了平方根、算术平方根、立方根等概念,熟练掌握这些定义是关键.3、(1)见解析(2)见解析(3)见解析【分析】(1)根据题意证明,,进而根据相似三角形对应边成比例,列出比例式,进而根据分式的性质化简即可得证;(2)分别过点分别作垂直于,垂足分别为,根据(1)证明高的比的关系,进即可证明(3)根据正方形的性质可得,进而可得,由,根据分式的性质即可证明.(1)证明:∵,∴,∴,(2)如图,分别过点分别作垂直于,垂足分别为,∵,∴,∴,(3)四边形是正方形,,【点睛】本题考查了相似三角形的性质与判定,分式的性质,掌握相似三角形的性质与判定是解题的关键.4、(1)x=4(2)x=2【解析】(1)解:移项得:-5x+6x=1+3,合并得:x=4;(2)解:去分母得:2(x+1)-(x-2)=6,去括号得:2x+2-x+2=6,移项合并得:x=2.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解.5、(1)(2)5(3)【分析】(1)先将点的坐标代入反比例函数解析式求得的值,再待定系数法求正比例函数解析式即可;(2)根据正比例函数解析式求得点的坐标,进而两点距离公式求解即可;(3)根据题意作的垂直平分线,设,勾股定理建立方程,解方程求解即可.(1)解:∵点P(m,4)在反比例函数的图像上,∴解得设正比例函数为将点代入得正比例函数为(2)将点Q(6,n)代入,得(3)如图,设的中点为,过点作交轴于点,设则,即是直角三角形即解得【点睛】本题考查了正比例函数与反比例函数综合,待定系数法求解析式,勾股定理求两点之间的距离,垂直平分线的性质,综合运用以上知识是解题的关键.
相关试卷
这是一份【真题汇编】2022年福建省晋江市中考数学真题汇总 卷(Ⅱ)(含答案详解),共28页。试卷主要包含了下列计算正确的是,若单项式与是同类项,则的值是等内容,欢迎下载使用。
这是一份【真题汇编】2022年福建省晋江市中考数学三年高频真题汇总卷(含答案详解),共20页。试卷主要包含了到三角形三个顶点距离相等的点是,的相反数是,-6的倒数是,若单项式与是同类项,则的值是等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年福建省晋江市中考数学备考模拟练习 (B)卷(含答案详解),共19页。试卷主要包含了下列计算中正确的是,在中,,,则等内容,欢迎下载使用。