【高频真题解析】中考数学模拟测评 卷(Ⅰ)(含答案详解)
展开
这是一份【高频真题解析】中考数学模拟测评 卷(Ⅰ)(含答案详解),共26页。试卷主要包含了如图,OM平分,,,则.,已知4个数等内容,欢迎下载使用。
中考数学模拟测评 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列四个实数中,无理数是( )A. B.0.131313… C. D.2、已知一个圆锥的高为3,母线长为5,则圆锥的侧面积是( )A.10π B.12π C.16π D.20π3、如图,已知△A′B′C′与△ABC是位似图形,点O是位似中心,若A′是OA的中点,则△A′B'C′与△ABC的面积比是( )A.1:4 B.1:2 C.2:1 D.4:14、如图,OM平分,,,则( ).A.96° B.108° C.120° D.144°5、某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式( )A.10x﹣5(20﹣x)≥125 B.10x+5(20﹣x)≤125C.10x+5(20﹣x)>125 D.10x﹣5(20﹣x)>1256、已知4个数:,,,,其中正数的个数有( )A.1 B. C.3 D.47、下列方程中,属于二元一次方程的是( )A.xy﹣3=1 B.4x﹣2y=3 C.x+=4 D.x2﹣4y=18、某公园改造一片长方形草地,长增加30%,宽减少20%,则这块长方形草地的面积( )A.增加10% B.增加4% C.减少4% D.大小不变9、如图,矩形ABCD中,点E,点F分别是BC,CD的中点,AE交对角线BD于点G,BF交AE于点H.则的值是( )A. B. C. D.10、将,2,,3按如图的方式排列,规定表示第m排左起第n个数,则与表示的两个数之积是( )A. B.4 C. D.6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、的倒数是________;绝对值等于3的数是________.2、如图,ADBC,E是线段AD上任意一点,BE与AC相交于点O,若△ABC的面积是5,△EOC的面积是2,则△BOC的面积是 ___.3、计算:=___;4、长方形纸片ABCD,点E、F分别在边AB、AD上,连接EF,将沿EF翻折,得到,连接CE,将翻折,得到,点恰好落在线段上,若,则__________°.5、若等腰三角形的一个外角等于80°,则与它不相邻的两个内角的度数分别是 ___;三、解答题(5小题,每小题10分,共计50分)1、计算:2、为了解班级学生参加课后服务的学习效果,何老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)此次调查的总人数为________;(2)扇形统计图中“不达标”对应的圆心角度数是________°;(3)请将条形统计图补充完整;(4)为了共同进步,何老师准备从被调查的A类和D类学生中各随机抽取一位同学进行“一帮一”互助学习.请用画树状图或列表的方法求出所选两位同学恰好是相同性别的概率.3、如图,直线AB与CD相交于点O,OE 是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是 ;(2)若∠COF=2∠COE,求△BOE 的度数;(3)试判断 OF是否平分∠AOC,请说明理由.4、综合与实践如图1,在综合实践课上,老师让学生用两个等腰直角三角形进行图形的旋转探究.在中,,,在中,,,点,分别在,边行,直角顶点重合在一起,将绕点逆时针旋转,设旋转角,其中.(1)当点落在上时,如图2:①请直接写出的度数为______(用含的式子表示);②若,,求的长;(2)如图3,连接,,并延长交于点,请判断与的位置关系,并加以证明;(3)如图4,当与是两个相等钝角时,其他条件不变,即在与中,,,,,则的度数为______(用含或的式子表示).5、在ABC中,,,AD为ABC的中线,点E是射线AD上一动点,连接CE,作,射线EM与射线BA交于点F.(1)如图1,当点E与点D重合时,求证:;(2)如图2,当点E在线段AD上,且与点A,D不重合时,①依题意,补全图形;②用等式表示线段AB,AF,AE之间的数量关系,并证明.(3)当点E在线段AD的延长线上,且时,直接写出用等式表示的线段AB,AF,AE之间的数量关系. -参考答案-一、单选题1、D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.无理数包括无线不循环小数和开方不能开尽的数,由此即可判定选择项.【详解】解:A.,是整数,属于有理数,故本选项不合题意;B.0.131313…是无限循环小数,属于有理数,故本选项不合题意;C.是分数,属于有理数,故本选项不合题意;D.是无理数,故本选项符合题意;故选:D.【点睛】题目主要考查立方根,无理数,有理数,理解无理数的定义是解题关键.2、D【分析】首先利用勾股定理求得底面半径的长,然后根据扇形的面积公式即可求解.【详解】解:圆锥的底面半径是:,则底面周长是:,则圆锥的侧面积是:.故选:D.【点睛】本题主要考查三视图的知识和圆锥侧面面积的计算,解题的关键是由三视图得到立体图形,及记住圆锥的侧面面积公式.3、A【分析】根据位似图形的概念得到△A′B′C′∽△ABC,A′B′∥AB,根据△OA′B′∽△OAB,求出,根据相似三角形的性质计算,得到答案.【详解】解:∵△A′B′C′与△ABC是位似图形,∴△A′B′C′∽△ABC,A′B′∥AB,∴△OA′B′∽△OAB,∴,∴△A′B'C′与△ABC的面积比为1:4,故选:A.【点睛】本题考查的是位似变换的概念、相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.4、B【分析】设,利用关系式,,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值.【详解】解:设,∵,∴,∴.∵,∴,∴.∵OM平分,∴,∴,解得..故选:B.【点睛】本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.5、D【分析】根据规定每答对一题得10分,答错或不答都扣5分,可以列出相应的不等式,从而可以解答本题.【详解】解:由题意可得,10x-5(20-x)>125,故选:D.【点睛】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.6、C【分析】化简后根据正数的定义判断即可.【详解】解:=1是正数,=2是正数,=1.5是正数,=-9是负数,故选C.【点睛】本题考查了有理数的乘方、相反数、绝对值的意义,以及正负数的意义,正确化简各数是解答本题的关键.7、B【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【详解】解:A、xy-3=1,是二元二次方程,故本选项不合题意;B、4x-2y=3,属于二元一次方程,故本选项符合题意;C、x+=4,是分式方程,故本选项不合题意;D、x2-4y=1,是二元二次方程,故本选项不合题意;故选:B.【点睛】此题主要考查了二元一次方程的定义,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.8、B【分析】设长方形草地的长为x,宽为y,则可求得增加后长及减少后的宽,从而可求得现在的面积,与原面积比较即可得到答案.【详解】设长方形草地的长为x,宽为y,则其面积为xy;增加后长为(1+30%)x,减少后的宽为(1-20%)y,此时的面积为(1+30%)x×(1-20%)y=1.04xy,1.04xy−xy=0.04xy,0.04xy÷xy×100%=4%.即这块长方形草地的面积比原来增加了4%.故选:B【点睛】本题考查了列代数式,根据题意设长方形草地的长与宽,进而求得原来的面积及长宽变化后的面积是关键.9、B【分析】取的中点,连接,交于点,则,,由,得,由,得,,则,,从而解决问题.【详解】解:矩形中,点,点分别是,的中点,,,,取的中点,连接,交于点,如图,则是的中位线,,,,,,,,,,,,,,,,,,故选:B.【点睛】本题主要考查了矩形的性质,相似三角形的判定与性质,利用相似三角形的性质表示出和的长是解题的关键.10、A【分析】根据数的排列方法可知,第一排1个数,第二排2个数,第三排3个数,第四排4个数,…第(m-1)排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个循环,根据题目意思找出第m排第m个数后再计算【详解】解:(5,4)表示第5排从左向右第4个数,由图可知,(5,4)所表示的数是2;是第21排第7个数,则前20排有个数,则是第个数,,2,,3四个数循环出现,表示的数是与表示的两个数之积是故选A【点睛】本题考查了数字的变化规律,判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.二、填空题1、 【分析】根据倒数的定义和绝对值的性质即可得出答案.【详解】解:的倒数是;绝对值等于3的数为±3,故答案为:,±3.【点睛】此题考查了绝对值的性质、倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2、3【分析】根据平行可得:与高相等,即两个三角形的面积相等,根据图中三角形之间的关系即可得.【详解】解:∵,∴与高相等,∴,又∵,∴,故答案为:3.【点睛】题目主要考查平行线间的距离相等,三角形面积的计算等,理解题意,掌握平行线之间的距离相等是解题关键.3、【分析】根据二次根式的乘法法则:(a≥0,b≥0)计算.【详解】解:原式==,故答案为:.【点睛】本题考查了二次根式的乘除法,掌握二次根式的乘法法则,最后的化简是解题关键.4、61【分析】由翻折得到,根据,得到,利用求出答案.【详解】解:由翻折得,,∵,∴,∵∴,故答案为:61.【点睛】此题考查了翻折的性质,角度的计算,正确掌握翻折的性质是解题的关键.5、40°,40°度,40度【分析】先根据平角等于180°求出与这个外角相邻的内角的度数,再根据等腰三角形两底角相等求解.【详解】解:∵等腰三角形的一个外角等于80°,∴与这个外角相邻的内角是180°-80°=100°,∴100°的内角是顶角,(180°-100°)=40°,∴另两个内角是40°,40°.故答案为:40°,40°.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.三、解答题1、【分析】直接利用二次根式的性质化简进而得出答案.【详解】解:【点睛】此题主要考查了二次根式的乘除运算, 正确化简二次根式是解题关键.2、(1)20人(2)36(3)见解析(4)【分析】(1)由条形统计图中B类学生数及扇形统计图中B类学生的百分比即可求得参与调查的总人数;(2)由扇形统计图可求得不达标的学生所占的百分比,它与360°的积即为所求的结果;(3)现两种统计图及(1)中所求得的总人数,可分别求得C类、D类学生的人数,从而可求得这两类中未知的学生数,从而可补充完整条形统计图;(4)记A类学生中的男生为“男1”,两个女生分别记为“女1”、“女2”,记D类学生的一男一女分别为“男”、“女”,列表即可求得所有可能的结果数及所选两位同学恰好是相同性别的结果数,从而可求得概率.(1)由条形统计图知,B类学生共有6+4=10(人),由扇形统计图知,B类学生所占的百分比为50%,则参与调查的总人数为:(人)故答案为:20人(2)由扇形统计图知,D类学生所占的百分比为:,则扇形统计图中“不达标”对应的圆心角度数是:360°×10%=36°故答案为:36(3)C类学生总人数为:20×25%=5(人),则C类学生中女生人数为:(人) D类学生总人数为:20×10%=2(人),则C类学生中男生人数为:(人)补充完整的条形统计图如下:(4)记A类学生中的男生为“男1”,两个女生分别记为“女1”、“女2”,记D类学生的一男一女分别为“男”、“女”,列表如下: 男1女1女2男 男男1男女1男女2女女男1女女1女女2则选取两位同学的所有可能结果数为6种,所选两位同学恰好是相同性别的结果数有3种,所以所选两位同学恰好是相同性别的概率为:【点睛】本题是统计图的综合,考查了条形统计图与扇形统计图,简单事件的概率,关键是读懂两个统计图并能从图中获取信息.3、(1)∠AOE和∠DOE;(2)∠BOE=30°;(3)OF平分AOC.理由见解析.【分析】(1)根据补角的定义,依据图形可直接得出答案;(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.【详解】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=×90°=60°,∠COE=×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF平分∠AOC.【点睛】考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.4、(1)①;②;(2),证明见解析;(3)【分析】(1)①由等腰直角三角形得,,故可求出;②过点M作于点,设,则,由,得是等腰直角三角形,得出,即可求出x的值,由勾股定理即可得出答案;(2)设与相交于点,由旋转得,根据SAS证明,由全等三角形的性质得,由得即,故可证;(3)设与相交于点,同(2)得,故,即可求.【详解】(1)①∵,都是等腰直角三角形,∴,,∵,∴,∴;②如图2,作于点,设,∵,,∴,∴,∴,在中,,∵,∴,∴,∴,∴,,∴;(2),证明如下:如图3,设与相交于点,由旋转可知:,∵,,∴,∴,∵,∴即,∴,∴;(3)如图4,设与相交于点,同(2)得,∴,.【点睛】本题考查等腰三角形的判定与性质,全等三角形的判定与性质,掌握相关知识点间的应用是解题的关键.5、(1)见解析;(2),证明见解析;(3)当时,,当时,【分析】(1)根据等腰三角形三线合一的性质得,,从而可得在中,,进而即可求解;(2)画出图形,在线段AB上取点G,使,再证明,进而即可得到结论;(3)分两种情况:当时,当时,分别画出图形,证明或,进而即可得到结论.【详解】(1)∵,∴是等腰三角形,∵,∴,,∵AD为ABC的中线,∴,,∴,∵,∴,∴,∴,在中,,∴;(2),证明如下:如图2,在线段AB上取点G,使,∵,∴是等边三角形,∴,,∵是等腰三角形,AD为ABC的中线,∴,,∴,即,∵,∴,在与中,,∴,∴,∴;(3)当时,如图3所示:与(2)同理:在线段AB上取点H,使,∵,∴是等边三角形,∴,,∵是等腰三角形,AD为的中线,∴,∵,∴,∴,∴,∴,当时,如图4所示:在线段AB的延长线上取点N,使,∵,∴是等边三角形,∴,∵∴,在与中,,∴,∴,∴, ∴,∴.【点睛】本题考查全等三角形的判定与性质、等腰三角形的性质以及等边三角形的判定与性质,根据题意做出辅助线找全等三角形是解题的关键.
相关试卷
这是一份【高频真题解析】最新中考数学模拟专项测评 A卷(含答案及详解),共21页。试卷主要包含了已知,,,则,若a<0,则= .,方程的解为等内容,欢迎下载使用。
这是一份【高频真题解析】中考数学模拟测评 卷(Ⅰ)(含答案及详解),共26页。试卷主要包含了使分式有意义的x的取值范围是等内容,欢迎下载使用。
这是一份【高频真题解析】2022年山西省介休市中考数学模拟真题测评 A卷(含答案详解),共23页。