【高频真题解析】2022年山东省泰安市中考数学模拟真题测评 A卷(含答案及详解)
展开
这是一份【高频真题解析】2022年山东省泰安市中考数学模拟真题测评 A卷(含答案及详解),共22页。试卷主要包含了如图,是的外接圆,,则的度数是,已知的两个根为,下列二次根式中,不能与合并的是等内容,欢迎下载使用。
2022年山东省泰安市中考数学模拟真题测评 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、平面直角坐标系中,为坐标原点,点的坐标为,将绕原点按逆时针方向旋转90°得,则点的坐标为( )A. B. C. D.2、在实数,,0.1010010001…,,中无理数有( )A.4个 B.3个 C.2个 D.1个3、下列计算错误的是( )A. B.C. D.4、如图,任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是( )A.E,F,G,H是各边中点.且AC=BD时,四边形EFGH是菱形B.E,F,G,H是各边中点.且AC⊥BD时,四边形EFGH是矩形C.E,F,G,H不是各边中点.四边形EFGH可以是平行四边形D.E,F,G,H不是各边中点.四边形EFGH不可能是菱形5、据统计,11月份互联网信息中提及“梅州”一词的次数约为48500000,数据48500000科学记数法表示为( )A. B. C. D.6、一把直尺与一块直角三角板按下图方式摆放,若,则( )A.52° B.53° C.54° D.63°7、如图,是的外接圆,,则的度数是( )A. B. C. D.8、已知的两个根为、,则的值为( )A.-2 B.2 C.-5 D.59、下列二次根式中,不能与合并的是( )A. B. C. D.10、如图,已知菱形OABC的顶点O(0,0),B(2,2),菱形的对角线的交于点D;若将菱形OABC绕点O逆时针旋转,每秒旋转45°,从如图所示位置起,经过60秒时,菱形的对角线的交点D的坐标为( )A.(1,1) B.(﹣1,﹣1) C.(-1,1) D.(1,﹣1)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某国产品牌的新能源汽车因物美价廉而深受大众喜爱,在某地区的销售量从1月份的10万辆增长到3月份的12.1万辆,则从1月份到3月份的月平均增长率为______.2、如图,在中,AB的垂直平分线交BC于D,AC的中垂线交BC于E,,则的度数为________.3、请写出一个开口向下且过点(0,﹣4)的抛物线表达式为 _________________.4、如图,直线l1∥l2∥l3,直线l4,l5被直线l1、l2、l3所截,截得的线段分别为AB,BC,DE,EF,若AB=4,BC=6,DE=3,则EF的长是 ______.5、如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是___.三、解答题(5小题,每小题10分,共计50分)1、如图,一次函数的图象交反比例函数的图象于,两点.(1)求反比例函数与一次函数解析式.(2)连接,求的面积.(3)根据图象直接回答:当为何值时,一次函数的值大于反比例函数的值?2、计算:.3、如图,直线AB、CD相交于点O,若,OA平分∠COE,求∠DOE的度数.4、如图,数轴上A和B.(1)点A表示 ,点B表示 .(2)点C表示最小的正整数,点D表示的倒数,点E表示,在数轴上描出点C、D、E.(3)将该数轴上点A、B、C、D、E表示的数用“<”连起来: .5、已知抛物线的顶点为,且过点.(1)求抛物线的解析式;(2)将抛物线先向左平移2个单位长度,再向下平移个单位长度后得到新抛物线.①若新抛物线与x轴交于A,B两点(点A在点B的左侧),且,求m的值;②若,是新抛物线上的两点,当时,均有,请直接写出n的取值范围. -参考答案-一、单选题1、D【分析】如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D,,,故有,,进而可得B点坐标.【详解】解:如图过点A作AC垂直于y轴交点为C,过点B作BD垂直于y轴交点为D ∵∴在和中∴∴∴B点坐标为故选D.【点睛】本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示.2、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:,是整数,属于有理数;是分数,属于有理数;无理数有0.1010010001…,,,共3个.故选:B.【点睛】此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3、B【分析】根据整式的乘除运算法则逐个判断即可.【详解】解:选项A:,故选项A正确,不符合题意;选项B:,故选项B不正确,符合题意;选项C:,故选项C正确,不符合题意;选项D:,故选项D正确,不符合题意;故选:B.【点睛】本题考查了同底数幂的乘、除运算;幂的乘方、积的乘方等运算,熟练掌握运算法则是解决本类题的关键.4、D【分析】当为各边中点,,,四边形是平行四边形;A中AC=BD,则,平行四边形为菱形,进而可判断正误;B中AC⊥BD,则,平行四边形为矩形,进而可判断正误;E,F,G,H不是各边中点,C中若四点位置满足,则可知四边形EFGH可以是平行四边形,进而可判断正误;D中若四点位置满足,则可知四边形EFGH可以是菱形,进而可判断正误.【详解】解:如图,连接当为各边中点时,可知分别为的中位线∴∴四边形是平行四边形A中AC=BD,则,平行四边形为菱形;正确,不符合题意;B中AC⊥BD,则,平行四边形为矩形;正确,不符合题意;C中E,F,G,H不是各边中点,若四点位置满足,则可知四边形EFGH可以是平行四边形;正确,不符合题意;D中若四点位置满足,则可知四边形EFGH可以是菱形;错误,符合题意;故选D.【点睛】本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.5、C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:48500000科学记数法表示为:48500000=.故答案为:.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6、B【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线,∵直尺的两边互相平行,∴,,∴,∴,故选B.【点睛】本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.7、C【分析】在等腰三角形OCB中,求得两个底角∠OBC、∠OCB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.【详解】解:在中,,;,,;又,,故选:.【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形的内角和定理,熟练掌握圆周角定理是解题的关键.8、B【分析】直接运用一元二次方程根与系数的关系求解即可.【详解】解:∵的两个根为、,∴故选:B【点睛】本题主要考查了一元二次方程根与系数的关系,若、为一元二次方程的两个实数根,则有,.9、B【分析】先把每个选项的二次根式化简,再逐一判断与的被开方数是否相同,被开方数相同则能合并,不相同就不能合并,从而可得答案.【详解】解:能与合并, 故A不符合题意;不能与合并,故B不符合题意;能与合并, 故C不符合题意;能与合并, 故D不符合题意;故选B【点睛】本题考查的是同类二次根式的概念,掌握“同类二次根式的概念进而判断两个二次根式能否合并”是解本题的关键.10、B【分析】分别过点和点作轴于点,作轴于点,根据菱形的性质以及中位线的性质求得点的坐标,进而计算旋转的度数,7.5周,进而根据中心对称求得点旋转后的D坐标【详解】如图,分别过点和点作轴于点,作轴于点,∴,∵四边形为菱形,∴点为的中点,∴点为的中点,∴,,∵,∴;由题意知菱形绕点逆时针旋转度数为:,∴菱形绕点逆时针旋转周,∴点绕点逆时针旋转周,∵,∴旋转60秒时点的坐标为.故选B【点睛】根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.二、填空题1、10%【分析】可先表示出2月份的销量,那么2月份的销量×(1+增长率)=12.1,把相应数值代入即可求解.【详解】解:2月份的销量为10×(1+x),3月份的销量在2月份销量的基础上增加x,为10×(1+x)×(1+x),根据题意得,10(1+x)2=121.解得,(舍去), ∴从1月份到3月份的月平均增长率为10%故答案为:10%【点睛】考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.2、【分析】根据线段的垂直平分线的性质得到,,得到和,根据三角形内角和定理计算得到答案.【详解】解:是线段的垂直平分线,,,同理,,,,故答案是:.【点睛】本题考查的是线段的垂直平分线的性质和三角形内角和定理,解题的关键是掌握线段的垂直平分线上的点到线段的两个端点的距离相等.3、y=﹣x2﹣4(答案不唯一)【分析】根据二次函数的性质,二次项系数小于0时,函数图象的开口向下,再利用过点(0,﹣4)得出即可.【详解】解:∵抛物线开口向下且过点(0,﹣4),∴可以设顶点坐标为(0,﹣4),故解析式为:y=﹣x2﹣4(答案不唯一).故答案为:y=﹣x2﹣4(答案不唯一).【点睛】本题考查了二次函数图象的性质,是开放型题目,答案不唯一.4、4.5【分析】根据平行线分线段成比例定理列出比例式,把已知数据代入计算即可.【详解】解:∵l1//l2//l3,∴,∵AB=4,BC=6,DE=3,∴,解得:EF=4.5,故答案为:4.5.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.5、(0,-5)【分析】在Rt△ODC中,利用勾股定理求出OC即可解决问题.【详解】解:∵A(12,13),∴OD=12,AD=13,∵四边形ABCD是菱形,∴CD=AD=13,在Rt△ODC中,,∴C(0,-5).故答案为:(0,-5)【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.三、解答题1、(1),;(2)15;(3)0<x<2或x>8.【分析】(1)先把点A的坐标代入,求出m的值得到反比例函数解析式,再求点B的坐标,然后代入反比例函数解析式求出点B的坐标,再将A、B两点的坐标代入y=kx+b,利用待定系数法求出一次函数的解析式;(2)先求出C点坐标,再根据△AOB的面积=△AOC的面积-三角形BOC的面积即可求解;(3)观察函数图象即可求得.(1)解:把A(2,-4)的坐标代入得:m=-8,∴反比例函数的解析式是;把B(a,-1)的坐标代入得:-1=,解得:a=8,∴B点坐标为(8,-1),把A(2,-4)、B(8,-1)的坐标代入y=kx+b,得:,解得: ,∴一次函数解析式为;(2)解:设直线AB交x轴于C.∵,∴当y=0时,x=10,∴OC=10,∴△AOB的面积=△AOC的面积-三角形BOC的面积=;(3)解:由图象知,当0<x<2或x>8时,一次函数的值大于反比例函数的值.【点睛】本题主要考查了反比例函数图象与一次函数图象的交点问题以及观察图象的能力,待定系数法求函数解析式,求出点B的坐标是解题的关键.2、【分析】根据完全平方公式及平方差公式,然后再合并同类项即可.【详解】解:原式.【点睛】本题考查了完全平方公式及平方差公式,属于基础题,计算过程中细心即可.3、100°【分析】根据对顶角的性质,可得∠AOC与∠DOB的关系,根据角平分线的性质,可得∠COE与∠AOC的关系,根据邻补角的性质,可得答案.【详解】解:由对顶角相等得∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠COE=2∠AOC=80°,由邻补角的性质得∠DOE=180°-∠COE=180°-80°=100°.【点睛】本题考查了对顶角、邻补角,对顶角相等,邻补角互补,熟练掌握对顶角的性质和角平分线的定义是解答本题的关键.4、(1),(2)见解析(3)1<<<<【分析】(1)根据数轴直接写出A、B所表示的数即可;(2)根据最小的正整数是1,的倒数是,然后据此在数轴上找到C、D、E即可;(3)将A、B、C、D、E表示的数从小到大排列,再用 “<”连接即可.(1)解:由数轴可知A、B表示的数分别是:,.故答案为:,.(2)解:∵最小的正整数是1,的倒数是∴C表示的数是1,D表示的数是,∴如图:数轴上的点C、D、E即为所求.(3)解:根据(2)的数轴可知,将点A、B、C、D、E表示的数用“<”连接如下:1<<<<.【点睛】本题主要考查了在数轴上表示数、倒数、最小的正整数、倒数以及利用数轴比较有理数的大小,在数轴上正确表示有理数成为解答本题的关键.5、(1)(2)①②【分析】(1)二次函数的顶点式为,将点坐标代入求解的值,回代求出解析式的表达式;(2)①平移后的解析式为,可知对称轴为直线,设点坐标到对称轴距离为,有点坐标到对称轴距离为,,,可得,解得,可知点坐标为,将坐标代入解析式解得的值即可;②由题意知该抛物线图像开口向上,对称轴为直线,点关于对称轴对称的点的横坐标为,知,解得,由时,均有可得计算求解即可(1)解:∵的顶点式为∴由题意得解得(舍去),,,∴抛物线的解析式为.(2)解:①平移后的解析式为∴对称轴为直线∴设点坐标到对称轴距离为,点坐标到对称轴距离为∴,∵∴解得∴点坐标为将代入解析式解得∴的值为8.②解:由题意知该抛物线图像开口向上,对称轴为直线,点关于对称轴对称的点的横坐标为,∴解得 ∵时,均有∴解得∴的取值范围为.【点睛】本题考查了二次函数的解析式、图象的平移与性质、与x轴的交点坐标等知识.解题的关键在于对二次函数知识的熟练灵活把握.
相关试卷
这是一份【高频真题解析】2022年福建省莆田中考数学模拟真题测评 A卷(含详解),共21页。
这是一份【高频真题解析】中考数学模拟真题测评 A卷(精选),共20页。试卷主要包含了的相反数是,下列计算正确的是等内容,欢迎下载使用。
这是一份【高频真题解析】2022年山东省枣庄市薛城区中考数学模拟真题测评 A卷(含答案及详解),共22页。试卷主要包含了在下列运算中,正确的是,的值.等内容,欢迎下载使用。