![2022年最新京改版七年级数学下册第四章一元一次不等式和一元一次不等式组单元测试试题第1页](http://m.enxinlong.com/img-preview/2/3/12675311/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新京改版七年级数学下册第四章一元一次不等式和一元一次不等式组单元测试试题第2页](http://m.enxinlong.com/img-preview/2/3/12675311/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新京改版七年级数学下册第四章一元一次不等式和一元一次不等式组单元测试试题第3页](http://m.enxinlong.com/img-preview/2/3/12675311/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试单元测试课时训练
展开
这是一份北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试单元测试课时训练,共19页。试卷主要包含了如图,数轴上表示的解集是,下列判断不正确的是,若m>n,则下列不等式成立的是,若a<b,则下列式子正确的是,如果关于x的方程ax﹣3等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某次知识竞赛共有30道选择题,答对一题得10分,若答错或不答一道题,则扣3分,要使总得分不少于70分则应该至少答对几道题?若设答对x题,可得式子为( )A.10x﹣3(30﹣x)>70 B.10x﹣3(30﹣x)≤70C.10x﹣3x≥0 D.10x﹣3(30﹣x)≥702、已知,则一定有,“□”中应填的符号是( )A. B. C. D.3、若m>n,则下列选项中不成立的是( )A.m+4>n+4 B.m﹣4>n﹣4 C. D.﹣4m>﹣4n4、如图,数轴上表示的解集是( )A.﹣3<x≤2 B.﹣3≤x<2 C.x>﹣3 D.x≤25、下列判断不正确的是( )A.若,则 B.若,则C.若,则 D.若,则6、若m>n,则下列不等式成立的是( )A.m﹣5<n﹣5 B. C.﹣5m>﹣5n D.7、若a>b,则下列不等式不正确的是( )A.﹣5a>﹣5b B. C.5a>5b D.a﹣5>b﹣58、若a<b,则下列式子正确的是( )A.> B.﹣3a<﹣3b C.3a>3b D.a﹣3<b﹣39、如果关于x的方程ax﹣3(x+1)=1﹣x有整数解,且关于y的不等式组有解,那么符合条件的所有整数a的个数为( )A.3 B.4 C.5 D.610、若不等式﹣3x<1,两边同时除以﹣3,得( )A.x>﹣ B.x<﹣ C.x> D.x<第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果|x|>3,那么x的范围是___________2、如果a<2,那么不等式组的解集为_______,的解集为_______.3、安排学生住宿,若每间住3人,则还有13人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为_____.4、不等式4x﹣3≤2x+1的非负整数解的和是 _____.5、如果a>b,那么﹣2﹣a___﹣2﹣b.(填“>”、“<”或“=”)三、解答题(5小题,每小题10分,共计50分)1、解不等式组﹣3x﹣17<4(x+1)≤3x+6,并将解集在数轴上表示出来.2、解不等式(组): (1) ; (2)3、对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为,则称d为点P到点Q的追击值,记作.例如,在数轴上点P表示的数是5,点Q表示的数是2,则点P到点Q的追击值为.(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的追击值,则点N表示的数是____________(用含a的代数式表示).(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A点的速度为每秒4个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b,设运动时间为.①当b=5时,问t为何值时,点A到点B的追击值;②当时间t不超过3秒时,要想使点A到点B的追击值都满足不大于9个单位长度,请直接写出b的取值范围.4、当x取何值时,不等式5x+2>3(x-1)与x-1≤7-x都成立?5、倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某垃圾处理厂计划向机器人公司购买型号和型号垃圾分拣机器人共台,其中型号机器人不少于型号机器人的倍设该垃圾处理厂购买台型号机器人.(1)该垃圾处理厂最多购买几台型号机器人?(2)机器人公司报价型号机器人万元台,型号机器人万元台,要使总费用不超过万元,则共有哪几种购买方案? ---------参考答案-----------一、单选题1、D【解析】【分析】根据得分−扣分不少于70分,可得出不等式.【详解】解:设答对x题,答错或不答(30−x),则10x−3(30−x)≥70.故选:D.【点睛】本题考查了由实际问题抽象出一元一次不等式的知识,解答本题的关键是找到不等关系.2、B【解析】【分析】根据不等式的性质:不等式两边同时乘以同一个负数,不等号的方向改变,即可选出答案.【详解】解:根据不等式的性质,不等式两边都乘同一个负数,不等号的方向改变.∵a>b,∴-4a<-4b.故选:B.【点睛】本题考查了不等式的性质,熟练掌握不等式的基本性质是解题的关键.3、D【解析】【分析】根据不等式的基本性质进行解答即可.【详解】解:∵m>n,A、m+4>n+4,成立,不符合题意;B、m﹣4>n﹣4,成立,不符合题意;C、,成立,不符合题意;D、﹣4m﹣4n,原式不成立,符合题意;故选:D.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解本题的关键.4、A【解析】【分析】根据求不等式组的解集的表示方法,可得答案.【详解】解:由图可得,x>﹣3且x≤2∴在数轴上表示的解集是﹣3<x≤2,故选A.【点睛】本题考查了在数轴上表示不等式组的解集,不等式组的解集在数轴上的表示方法是:大大取大,小小取小,大小小大中间找,小小大大无解.5、D【解析】【分析】根据不等式得性质判断即可.【详解】A. 若,则不等式两边同时加3,不等号不变,选项正确;B. 若,则不等式两边同时乘-3,不等号改变,选项正确;C. 若2,则不等式两边同时除2,不等号不变,选项正确;D. 若,则不等式两边同时乘,有可能,选项错误;故选:D.【点睛】本题考查不等式得性质,需要特别注意不等式两边同时乘(除)一个正数不等号不变,同时乘(除)一个负数不等号改变.6、D【解析】【分析】根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案.【详解】解:A、在不等式m>n的两边同时减去5,不等式仍然成立,即m﹣5>n﹣5,原变形错误,故此选项不符合题意;B、在不等式m>n的两边同时除以5,不等式仍然成立,即,原变形错误,故此选项不符合题意;C、在不等式m>n的两边同时乘以﹣5,不等式号方向改变,即﹣5m<﹣5n,原变形错误,故此选项不符合题意;D、在不等式m>n的两边同时乘以﹣5,不等式号方向改变,即,原变形正确,故此选项符合题意.故选:D.【点睛】本题考查了不等式的性质,不等式的基本性质是解不等式的主要依据,必须熟练地掌握.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.7、A【解析】【分析】根据不等式的基本性质逐项判断即可得.【详解】解:A、不等式两边同乘以,改变不等号的方向,则,此项不正确;B、不等式两边同除以5,不改变不等号的方向,则,此项正确;C、不等式两边同乘以5,不改变不等号的方向,则,此项正确;D、不等式两边同减去5,不改变不等号的方向,则,此项正确;故选:A.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.8、D【解析】【分析】根据不等式的基本性质判断即可.【详解】解:A选项,∵a<b,∴,故该选项不符合题意;B选项,∵a<b,∴﹣3a>﹣3b,故该选项不符合题意;C选项,∵a<b,∴3a<3b,故该选项不符合题意;D选项,∵a<b,∴a﹣3<b﹣3,故该选项符合题意;故选:D【点睛】本题考查了不等式的基本性质,掌握①不等式的两边同时加上(或减去)同一个数或代数式,不等号的方向不变;②不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘(或除以)同一个负数,不等号的方向改变是解题的关键.9、C【解析】【分析】先解关于y的不等式组可得解集为,根据关于y的不等式组有解可得,由此可得,再解关于x的方程可得解为,根据关于x的方程ax﹣3(x+1)=1﹣x有整数解可得的值为整数,由此可求得整数a的值,由此即可求得答案.【详解】解:,解不等式①,得:,解不等式②,得:,∴不等式组的解集为,∵关于y的不等式组有解,∴,解得:,∵ax﹣3(x+1)=1﹣x,∴ax﹣3x﹣3=1﹣x,∴ax﹣3x+x=1+3,∴(a﹣2)x=4,∵关于x的方程ax﹣3(x+1)=1﹣x有整数解,a为整数,∴a﹣2=4,2,1,﹣1,﹣2,﹣4,解得:a=6,4,3,1,0,﹣2,又∵,∴a=4,3,1,0,﹣2,∴符合条件的所有整数a的个数为5个,故选:C【点睛】此题考查了解一元一次不等式组、解一元一次方程,熟练掌握相关运算法则是解本题的关键.10、A【解析】【分析】根据题意直接利用不等式的性质进行计算即可得出答案.【详解】解:不等式﹣3x<1,两边同时除以﹣3,得x>﹣.故选:A.【点睛】本题主要考查不等式的基本性质.解不等式依据不等式的性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.二、填空题1、或【解析】【分析】首先算出|x|=3的解,然后根据“大于取两边”的口诀得解 .【详解】解:由绝对值的意义可得:x=3或x=-3时,|x|=3,∴根据“大于取两边”即可得到|x|>3的解集为:x>3或 x<−3(如图), 故答案为:x>3或 x<−3. 【点睛】本题考查绝对值的意义及不等式的求解,熟练掌握有关不等式的求解方法是解题关键.2、 x>2 无解【解析】【分析】根据同大取大,同小取小,大小小大中间取判断即可;【详解】∵a<2,∴不等式组的解集为x>2;不等式组中x不存在,方程组无解;故答案是:x>2;无解.【点睛】本题主要考查了不等式组的解集表示,准确分析判断是解题的关键.3、5或6【解析】【分析】设共有间宿舍,则共有个学生,然后根据每间住6人,则还有一间不空也不满,列出不等式组进行求解即可.【详解】解:设共有间宿舍,则共有个学生,依题意得:,解得:.又为正整数,或6.故答案为:5或6.【点睛】本题主要考查了一元一次不等式组的应用,解题的关键在于能够准确根据题意列出不等式组进行求解.4、3【解析】【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1得出不等式的解集,从而得出答案.【详解】解:4x﹣3≤2x+1移项,得:4x﹣2x≤1+3,合并同类项,得:2x≤4,系数化为1,得:x≤2,∴不等式的非负整数解为0、1、2,∴不等式的非负整数解的和为0+1+2=3,故答案为:3.【点睛】本题主要考查了一元一次不等式的整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.5、<【解析】【分析】根据不等式的基本性质:不等式的两边乘(或除以)同一个负数,不等号的方向改变;不等式两边加上同一个数,不等式的方向不变.【详解】解:∵a>b,∴﹣a<﹣b,∴﹣2﹣a<﹣2﹣b,故答案为:<.【点睛】本题考查不等式的性质,熟练掌握不等式的基本性质是解题的关键.三、解答题1、,在数轴上表示见解析.【解析】【分析】首先根据解一元一次不等式组的步骤求出不等式组的解集,然后在数轴上表示出来即可.【详解】解:∵ ﹣3x﹣17<4(x+1)≤3x+6,解不等式﹣3x﹣17<4(x+1),去括号得:移项得:合并同类项得:系数化为1得:解不等式4(x+1)≤3x+6,去括号得: 移项得: 合并同类项得: ∴不等式组的解集为,在数轴上表示如下:.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2、(1)x>1.5;(2)-1≤x<3【解析】【分析】(1)根据移项、合并同类项、系数化为1的步骤可得x的范围;(2)首先求出两个不等式的解集,然后取其公共部分即为不等式组的解集.【详解】(1)解:5x-2>3x+1,移项得:5x-3x>1+2,合并同类项得:2x>3,系数化为1得:x>1.5;(2)解: 解不等式2x+5≤3(x+2),得x≥-1, 解不等式2x-<1,得x<3, ∴不等式组的解集为-1≤x<3.【点睛】此题考查了解一元一次不等式,解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式,解一元一次不等式组的方法.3、(1)或;(2)①或;②【解析】【分析】(1)根据追击值的定义,分在左侧和右侧两种情况进行讨论,分别求解;(2)①分点在的左侧和右侧两种情况,根据追击值,列方程求解即可;②用含有的式子表示出、,分点在的左侧和右侧两种情况,分别求解即可.【详解】解:(1)由题意可得:点到点的距离为,当在左侧时,则表示的数为,当在右侧时,则表示的数为故答案为或;(2)①由题意可得:点表示的数为,点表示的数为当点在的左侧时,即,解得,∵,∴,解得当点在的右侧时,即,解得,∵,∴,解得综上,或时,;②由题意可得:点表示的数为,点表示的数为当点在点的左侧或重合时,此时,随着的增大,与之间的距离越来越大,∵时,,即时,,,解得即当点在点的右侧时,此时,在不重合的情况下,之间的距离越来越小,最大为初始状态,即时,,,在可以重合的情况下,,,的最大值为综上, 【点睛】本题考查了数轴上的动点问题,涉及了两点之间的距离,解题的关键是对数轴上两点之间的距离进行分情况讨论.4、满足时,不等式5x+2>3(x-1)与x-1≤7-x都成立【解析】【分析】先解由两个不等式组成的不等式组得到即可.【详解】解:,解不等式①得:,解不等式②得:,∴不等式组的解集为,∴当满足时,不等式5x+2>3(x-1)与x-1≤7-x都成立.【点睛】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大小小大中间找,大大小小找不到”确定不等式的解集.5、(1)25台;(2)方案1:A23台,B37台;方案2:A24台;B36台;方案3:A25台,B35台.【解析】【分析】(1)设该垃圾处理厂购买x台A型号机器人,则购买(60一x)台B型号机器人,根据购进B型号机器人的数量不少于A型号机器人的1.4倍,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;(2)根据总价=单价×数量,结合总价不超过510万元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,结合x为整数且x≤25,即可得出各购买方案.【详解】解:(1)设该垃圾处理厂购买x台A型号机器人,则购买(60一x)台B型号机器人,依题意得:60-x≥1.4x解得:x≤25答:该垃圾处理厂最多购买25台A型号机器人.(2)依题意得:6x+10(60-x)≤510,解得:x≥又∵x为整数,且x≤25∴x可以取23,24,25,∴共有3种购买方案,方案1:购买23台A型号机器人,37台B型号机器人;方案2:购买24台A型号机器人,36台B型号机器人;方案3:购买25台A型号机器人,35台B型号机器人.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试单元测试课堂检测,共20页。试卷主要包含了如果点P,关于x的方程3﹣2x=3,对不等式进行变形,结果正确的是,若,则下列不等式不一定成立的是等内容,欢迎下载使用。
这是一份2021学年第四章 一元一次不等式和一元一次不等式组综合与测试单元测试综合训练题,共18页。试卷主要包含了下列不等式一定成立的是,对于不等式4x+7,不等式组的解集在数轴上应表示为等内容,欢迎下载使用。
这是一份七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试综合训练题,共16页。试卷主要包含了若a<b,则下列式子正确的是,下列不等式一定成立的是等内容,欢迎下载使用。