初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试单元测试达标测试
展开
这是一份初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试单元测试达标测试,共19页。
七年级数学下册第四章一元一次不等式和一元一次不等式组单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、不符式的解集在数轴上表示正确的是( )A. B.C. D.2、不等式的解集在数轴上表示正确的是( )A. B.C. D.3、已知a>b,则下列选项不正确是( )A.a+c>b+c B.a﹣b>0 C. D.a•c2≥b•c24、如果x>y,则下列不等式正确的是( )A.x﹣1<y﹣1 B.5x<5y C. D.﹣2x>﹣2y5、已知关于的不等式的解集为,则的取值范围是( )A. B. C. D.6、关于的不等式的解集如图所示,则的值是( )A.0 B. C.2 D.67、已知不等式组2<x﹣1<4的解都是关于x的一次不等式3x≤2a﹣1的解,则a的取值范围是( )A.a≤5 B.a<5 C.a≥8 D.a>88、如果,m,这三个实数在数轴上所对应的点从左到右依次排列,那么m的取值范围是( )A. B. C. D.9、适合|2a+7|+|2a﹣1|=8的整数a的值的个数有( )A.2 B.4 C.8 D.1610、把不等式组的解集在数轴上表示,正确的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、以下说法正确的是:_______.①由,得;②由,得③由,得;④由,得⑤和互为相反数;⑥是不等式的解2、不等式组有解,m的取值范围是 ______.3、解不等式:x﹣3<2x的解集是 ___.4、 “x的2倍与6的和是负数”用不等式表示为_____.5、不等式组的解是______.三、解答题(5小题,每小题10分,共计50分)1、解不等式(组)(1)(2)2、某童装店按每套90元的价格购进40套童装,然后按标价打九折售出,如果要获得不低于900元的利润,每套童装的标价至少是_____元.3、当x取何值时,不等式5x+2>3(x-1)与x-1≤7-x都成立?4、在防控新型冠状病毒期间,甲、乙两个服装厂都接到了制做同一种型号的医用防护服任务,已知甲、乙两个服装厂每天共制做这种防护服100套,甲服装厂3天制做的防护服与乙服装厂2天制做的防护服套数相同.(1)求甲、乙两个服装厂每天各制做多少套这种防护服;(2)现有1200套这种防护服的制做任务,要求不超过10天完成,若乙服装厂每天多做8套,那么甲服装厂每天至少多做多少套?5、解不等式组,并把解集在数轴上表示出来. ---------参考答案-----------一、单选题1、D【解析】【分析】先求出不等式的解集,再根据解集在数轴上的表示方法表示即可.【详解】解:,解得:,在数轴上表示解集为:,故选:D.【点睛】题目主要考查了求不等式的解集,在数轴上表示不等式的解集,掌握数轴上表示不等式解集的方法是解题的关键.2、A【解析】【分析】先解不等式,再利用数轴的性质解答.【详解】解:解得,∴不等式的解集在数轴上表示为:故选:A.【点睛】此题考查解不等式及在数轴上表示不等式的解集,正确解不等式及掌握数轴的性质是解题的关键.3、C【解析】【分析】由题意直接根据不等式的性质对各个选项进行分析判断即可.【详解】解:A.∵a>b,∴a+c>b+c,故本选项不符合题意;B.∵a>b,∴a﹣b>b﹣b,∴a﹣b>0,故本选项不符合题意;C.∵a>b,∴,故本选项符合题意;D.∵a>b,c2≥0,∴a•c2≥b•c2,故本选项不符合题意;故选:C.【点睛】本题考查不等式的性质,能够正确利用不等式的性质是解题的关键,注意不等式两边同时乘除一个负数要改变不等号的方向.4、C【解析】【分析】根据不等式的性质解答.①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A.∵x>y,∴x﹣1>y﹣1,故本选项不符合题意;B.∵x>y,∴5x>5y,故本选项不符合题意;C.∵x>y,∴,故本选项符合题意; D.∵x>y,∴﹣2x<﹣2y,故本选项不符合题意;故选:C.【点睛】此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键.5、C【解析】【分析】由题意直接根据已知解集得到,即可确定出的范围.【详解】解:不等式的解集为,,解得:.故选:C.【点睛】本题考查不等式的解集,熟练掌握不等式的基本性质是解答本题的关键.6、C【解析】【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值.【详解】解:解不等式,得 ,∵由数轴得到解集为x≤-1,∴ ,解得:a=2,故选C.【点睛】本题考查解不等式和不等式解集的数轴表示,解题关键是根据数轴上的表示准确确定不等式的解集.7、C【解析】【分析】先求出不等式组2<x﹣1<4的解集,再求出一次不等式3x≤2a﹣1的解集,根据一次不等式解集的分界点在5以及其右边,列不等式求解即可.【详解】解:∵2<x﹣1<4,∴3<x<5,∵一次不等式3x≤2a﹣1,解得,∵满足3<x<5都在范围内,∴,解得.故选择C.【点睛】本题考查不等式组的解集与一次不等式的解集关系,利用解集的分界点在5以及5的右边部分得出不等式是解题关键.8、C【解析】【分析】如果2m,m,这三个实数在数轴上所对应的点从左到右依次排列,则可得三个数的大小关系,列出相应的不等式组进行求解,然后根据确定不等式组解集方法(同大取大,同小取小),即可解得m的范围.【详解】解:根据题意得:,解①得:,解②得:,解③得:,∴m的取值范围是.故选:C.【点睛】题目主要考查不等式组的应用及解法,理解题意,列出相应的不等式组,熟练掌握确定不等式组解集的方法是解题关键.9、B【解析】【分析】先分别讨论绝对值符号里面代数式值,然后去绝对值,解一元一次方程即可求出a的值.【详解】解:(1)当2a+7≥0,2a﹣1≥0时,可得,2a+7+2a﹣1=8,解得,a=解不等式2a+7≥0,2a﹣1≥0得,a≥﹣,a≥,所以a≥,而a又是整数,故a=不是方程的一个解;(2)当2a+7≤0,2a﹣1≤0时,可得,﹣2a﹣7﹣2a+1=8,解得,a=﹣解不等式2a+7≤0,2a﹣1≤0得,a≤﹣,a≤,所以a≤﹣,而a又是整数,故a=﹣不是方程的一个解;(3)当2a+7≥0,2a﹣1≤0时,可得,2a+7﹣2a+1=8,解得,a可为任何数.解不等式2a+7≥0,2a﹣1≤0得,a≥﹣,a≤,所以﹣≤a≤,而a又是整数,故a的值有:﹣3,﹣2,﹣1,0.(4)当2a+7≤0,2a﹣1≥0时,可得,﹣2a﹣7+2a﹣1=8,可见此时方程不成立,a无解.综合以上4点可知a的值有四个:﹣3,﹣2,﹣1,0.故选:B.【点睛】本题主要考查去绝对值及解一元一次方程的方法:解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论,即去掉绝对值符号得到一般形式的一元一次方程,再求解.10、D【解析】【分析】先求出不等式组的解集,再把不等式组的解集在数轴上表示出来,即可求解.【详解】解:,解不等式②,得: ,所以不等式组的解集为 把不等式组的解集在数轴上表示出来为:故选:D【点睛】本题主要考查了解一元一次不等组,熟练掌握解一元一次不等组的步骤是解题的关键.二、填空题1、②③④【解析】【分析】根据不等式的基本性质得出结论即可.【详解】解:①由,当时,得,故结论①错误;②由,得,故结论②正确;③由,得;故结论③正确;④由,得;故结论④正确;⑤和互为相反数,当为奇数时,,故结论⑤错误;⑥是不等式的解,故结论⑥错误;故正确的结论为:②③④.【点睛】本题考查了不等式的基本性质,熟知不等式的基本性质是解本题的关键.2、m<2【解析】【分析】根据不等式组得到m+3<x<5,【详解】解:解不等式组,可得,m+3<x<5,∵原不等式组有解∴m+3<5,解得:m<2,故答案为:m<2.【点睛】本题主要考查了不等式组的计算,准确计算是解题的关键.3、.【解析】【分析】先移项,然后系数化为1,即可求出不等式的解集.【详解】解:,∴,∴,∴,∴,∴.故答案为:.【点睛】本题考查了一元一次不等式的解法,是基础题,正确计算是解题的关键.4、【解析】【分析】根据题意列出不等式即可.【详解】解:“x的2倍与6的和是负数”用不等式表示为,故答案为:.【点睛】本题考查了列不等式,读懂题意是解本题的关键.5、【解析】【分析】分别解不等式组中的两个不等式,再确定两个不等式的解集的公共部分,从而可得答案.【详解】解:由①得: 由②得: 整理得: 所以不等式组的解集为: 故答案为:【点睛】本题考查的是不等式组的解法,掌握解一元一次不等式组的方法是解题的关键.三、解答题1、(1);(2)【解析】【分析】(1)根据解不等式的基本步骤求解即可;(2)先求得每一个不等式的解集,后确定出解集即可.【详解】(1)∵ , ∴,∴,∴; (2) 由①:, 由②:, .【点睛】本题考查了一元一次不等式和一元一次不等式组的解法,熟练掌握解题的基本步骤是解题的关键.2、125【解析】【分析】设每套童装的标价是x元,根据(售价﹣进价)×销量=总利润列出不等式,解不等式可得出x的取值范围,即可得答案.【详解】设每套童装的标价是x元,∵按标价打九折售出,要获得不低于900元的利润,∴40×(x•90%﹣90)≥900,解得:x≥125,∴每套童装的标价至少125元.故答案为:125【点睛】本题考查一元一次不等式的应用,理解题意,根据(售价﹣进价)×销量=总利润列出不等式是解题关键.3、满足时,不等式5x+2>3(x-1)与x-1≤7-x都成立【解析】【分析】先解由两个不等式组成的不等式组得到即可.【详解】解:,解不等式①得:,解不等式②得:,∴不等式组的解集为,∴当满足时,不等式5x+2>3(x-1)与x-1≤7-x都成立.【点睛】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大小小大中间找,大大小小找不到”确定不等式的解集.4、(1)甲服装厂每天制做40套这种防护服,乙服装厂每天制做60套这种防护服;(2)12套【解析】【分析】(1)设甲服装厂每天制做x套这种防护服,则乙服装厂每天制做(100﹣x)套这种防护服,根据甲服装厂3天制做的防护服与乙服装厂2天制做的防护服套数相同,列方程得3x=2(100﹣x),求出x,再求代数式(100﹣x)值即可;(2)设甲服装厂每天多做m套,利用工作总量=工作效率×工作时间,结合两服装厂10天至少生产1200套这种防护服,列出不等式10[(40+m)+(60+8)]≥1200,解之即可.【详解】解:(1)设甲服装厂每天制做x套这种防护服,则乙服装厂每天制做(100﹣x)套这种防护服,依题意得:3x=2(100﹣x),解得:x=40,∴100﹣x=100﹣40=60.答:甲服装厂每天制做40套这种防护服,乙服装厂每天制做60套这种防护服.(2)设甲服装厂每天多做m套,依题意得:10[(40+m)+(60+8)]≥1200,解得:m≥12.答:甲服装厂每天至少多做12套.【点睛】本题考查一元一次方程的应用、一元一次不等式的应用,读懂题意,找到各数量之间的关系,正确列出方程和不等式是解答的关键.5、2≤x<3,数轴见解析【解析】【分析】分别解两个不等式得到x<3和x≥2,然后根据大小小大中间找确定不等式组的解集.【详解】解:,解①得x<3,解②得x≥2,所以不等式组的解集为2≤x<3.在数轴上表示解集如下.【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练,共22页。试卷主要包含了下列语句中,错误的个数是,如图,下列命题中,真命题是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试单元测试课后测评,共18页。试卷主要包含了下列运算中正确的是,下列表述正确的是,如果a﹣4b=0,那么多项式2,已知,,则,下列各式中,计算结果为的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课后练习题,共16页。试卷主要包含了下列多项式中有因式x﹣1的是,把分解因式的结果是.,下列因式分解中,正确的是等内容,欢迎下载使用。