![【高频真题解析】2022年内蒙古赤峰市中考数学模拟考试 A卷(精选)第1页](http://m.enxinlong.com/img-preview/2/3/12675164/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【高频真题解析】2022年内蒙古赤峰市中考数学模拟考试 A卷(精选)第2页](http://m.enxinlong.com/img-preview/2/3/12675164/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【高频真题解析】2022年内蒙古赤峰市中考数学模拟考试 A卷(精选)第3页](http://m.enxinlong.com/img-preview/2/3/12675164/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【高频真题解析】2022年内蒙古赤峰市中考数学模拟考试 A卷(精选)
展开
这是一份【高频真题解析】2022年内蒙古赤峰市中考数学模拟考试 A卷(精选),共27页。试卷主要包含了已知,,且,则的值为,已知4个数,不等式组的最小整数解是,定义一种新运算等内容,欢迎下载使用。
2022年内蒙古赤峰市中考数学模拟考试 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )A.1个 B.2个 C.3个 D.4个2、下列计算正确的是( )A. B.C. D.3、若+(3y+4)2=0,则yx的值为( )A. B.- C.- D.4、已知,,且,则的值为( )A.1或3 B.1或﹣3 C.﹣1或﹣3 D.﹣1或35、已知4个数:,,,,其中正数的个数有( )A.1 B. C.3 D.46、不等式组的最小整数解是( )A.5 B.0 C. D.7、定义一种新运算:,,则方程的解是( )A., B., C., D.,8、神舟号载人飞船于2021年10月16日凌晨成功对接中国空间站,自升空以来神舟十三号飞船每天绕地球16圈,按地球赤道周长计算神舟十三号飞船每天飞行约641200千米,641200用科学记数法表示为( )A. B. C. D.9、如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=( )A.25° B.27° C.30° D.45°10、若关于x的不等式组无解,则m的取值范围是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将△ABC沿着DE翻折,使点A落到点A'处,A'D、A'E分别与BC交于M、N两点,且DE∥BC.已知∠A'NM=20°,则∠NEC=_____度.2、有这样一道题:“栖树一群鸦,鸦树不知数;三只栖一树,五只没去处;五只栖一树,闲了一棵树;请你动动脑,算出鸦树数.”前三句的意思是:一群乌鸦在树上栖息,若每棵树上栖息3只,那么有5只没处栖息;若每棵树上栖息5只,那么有一棵树上没有乌鸦.请你动动脑,该问题中乌鸦有_________只.3、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为______.4、当代数式的值为7时,的值为__________.5、如图,在中,是边的垂直平分线,,的周长为23,则的周长为_________.三、解答题(5小题,每小题10分,共计50分)1、如图1,对于的顶点P及其对边MN上的一点Q,给出如下定义:以P为圆心,PQ长为半径的圆与直线MN的公共点都在线段MN上,则称点Q为关于点P的内联点.在平面直角坐标系xOy中:(1)如图2,已知点,点B在直线上.①若点,点,则在点O,C,A中,点______是关于点B的内联点;②若关于点B的内联点存在,求点B横坐标m的取值范围;(2)已知点,点,将点D绕原点O旋转得到点F,若关于点E的内联点存在,直接写出点F横坐标n的取值范围.2、计算:(1)(2)3、如图,在中,,,.动点P从点A出发,沿AB以每秒4个单位长度的速度向终点B运动.过点P作交AC或BC于点Q,分别过点P、Q作AC、AB的平行线交于点M.设与重叠部分的面积为S,点P运动的时间为秒.(1)当点Q在AC上时,CQ的长为______(用含t的代数式表示).(2)当点M落在BC上时,求t的值.(3)当与的重合部分为三角形时,求S与t之间的函数关系式.(4)点N为PM中点,直接写出点N到的两个顶点的距离相等时t的值.4、百货大楼童装专柜平均每天可售出30件童装,每件盈利40元,为了迎接“周年庆”促销活动,商场决定采取适当的降价措施.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出3件.要使平均每天销售这种童装盈利1800元,那么每件童装应降价多少元?5、先化简,再求值:,其中. -参考答案-一、单选题1、C【分析】解不等式组得到,利用不等式组有且仅有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可.【详解】解:解不等式组得:,∵不等式组有且仅有3个整数解,∴,解得:,解方程得:,∵方程的解为负整数,∴,∴,∴a的值为:-13、-11、-9、-7、-5、-3,…,∴符合条件的整数a为:-13,-11,-9,共3个,故选C.【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.2、D【分析】利用完全平方公式计算即可.【详解】解:A、原式=a2+2ab+b2,本选项错误;B、原式==-a2+2ab-b2,本选项错误;C、原式=a2−2ab+b2,本选项错误;D、原式=a2+2ab+b2,本选项正确,故选:D.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.3、A【分析】根据绝对值的非负性及偶次方的非负性得到x-2=0,3y+4=0,求出x、y的值代入计算即可【详解】解:∵+(3y+4)2=0,∴x-2=0,3y+4=0,∴x=2,y=,∴,故选:A.【点睛】此题考查了已知字母的值求代数式的值,正确掌握绝对值的非负性及偶次方的非负性是解题的关键.4、A【分析】由题意利用乘方和绝对值求出x与y的值,即可求出x-y的值.【详解】解:∵,, ,∴x=1,y=-2,此时x-y=3;x=-1,y=-2,此时x-y=1.故选:A.【点睛】此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键.5、C【分析】化简后根据正数的定义判断即可.【详解】解:=1是正数,=2是正数,=1.5是正数,=-9是负数,故选C.【点睛】本题考查了有理数的乘方、相反数、绝对值的意义,以及正负数的意义,正确化简各数是解答本题的关键.6、C【分析】分别求出各不等式的解集,再求出其公共解集,然后求出最小整数解即可.【详解】解:解不等式,得:,解不等式,得:,故不等式组的解集为:,则该不等式组的最小整数解为:.故选:C.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7、A【分析】根据新定义列出关于x的方程,解方程即可.【详解】解:由题意得,方程,化为,整理得,,,∴,解得:,,故选A.【点睛】本题考查了公式法解一元二次方程,正确理解新运算、掌握公式法解一元二次方程的一般步骤是解题的关键.8、B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:641200用科学记数法表示为:641200=,故选择B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9、B【分析】根据BE⊥AC,AD=CD,得到AB=BC,∠ABC,证明△ABD≌△CED,求出∠E=∠ABE=27°.【详解】解:∵BE⊥AC,AD=CD,∴BE是AC的垂直平分线,∴AB=BC,∴∠ABC=27°,∵AD=CD,BD=ED,∠ADB=∠CDE,∴△ABD≌△CED,∴∠E=∠ABE=27°,故选:B.【点睛】此题考查了线段垂直平分线的性质,全等三角形的判定及性质,熟记线段垂直平分线的性质是解题的关键.10、D【分析】解两个不等式,再根据“大大小小找不着”可得m的取值范围.【详解】解:解不等式得:,解不等式得:,∵不等式组无解,∴,解得:,故选:D.【点睛】此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则是解题关键.二、填空题1、140【分析】根据对顶角相等,可得∠CNE=20°,再由DE∥BC,可得∠DEN=∠CNE=20°,然后根据折叠的性质可得∠AED=∠DEN=20°,即可求解.【详解】解:∵∠A′NM=20°,∠CNE=∠A′NM,∴∠CNE=20°,∵DE∥BC,∴∠DEN=∠CNE=20°,由翻折性质得:∠AED=∠DEN=20°,∴∠AEN=40°,∴∠NEC=180°﹣∠AEN=180°﹣40°=140°.故答案为:140【点睛】本题主要考查了折叠的性质,平行线的性质,熟练掌握图形折叠前后对应角相等,两直线平行,内错角相等是解题的关键.2、20【分析】设乌鸦有x只,树y棵,直接利用若每棵树上栖息3只,那么有5只没处栖息;若每棵树上栖息5只,那么有一棵树上没有乌鸦列出方程组,进而得出答案.【详解】解:设乌鸦x只,树y棵.依题意可列方程组:.解得, 所以,乌鸦有20只故答案为:20.【点睛】此题主要考查了二元一次方程组的应用,正确得出方程组是解题关键.3、##【分析】设去年甲、乙、丙三种水果的种植面积分别为: 设去年甲、乙、丙三种水果的平均亩产量分别为: 设今年的种植面积分别为: 再根据题中相等关系列方程:①,②,求解: 再利用丙品种水果增加的产量占今年水果总产量的,列方程 求解 从而可得答案.【详解】解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,设去年甲、乙、丙三种水果的种植面积分别为: 去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,设去年甲、乙、丙三种水果的平均亩产量分别为: 则今年甲品种水果的平均亩产量为: 乙品种水果的平均亩产量为: 丙品种的平均亩产量为 设今年的种植面积分别为: 甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,①,②,解得: 又丙品种水果增加的产量占今年水果总产量的, 解得: 所以三种水果去年的种植总面积与今年的种植总面积之比为: 故答案为:【点睛】本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.4、2【分析】由条件可得,而,从而可求得结果的值.【详解】解:∵,∴,∴.故答案为:2.【点睛】本题是求代数式的值,关键是由条件求得,运用了整体思想.5、33【分析】根据线段垂直平分线的性质,可得AD=CD,AC=2AE= ,再由的周长为23,可得AB+BC= ,即可求解.【详解】解:∵是边的垂直平分线,∴AD=CD,AC=2AE= ,∴AD+BD=CD+BD=BC,∵的周长为23,∴AB+AD+BD=AB+BC= ,∴的周长为 .故答案为:33【点睛】本题主要考查了线段垂直平分线的性质定理,熟练掌握线段垂直平分线上的点到线段两端的距离相等是解题的关键.三、解答题1、(1)①C,A②(2)和【分析】(1)①由内联点的定义可知C,A满足条件②结合图象可知当点B为圆心的圆与AO线段相切时,有一个公共点,且符合内联点定义,故时均符合题意.(2)由(1)问可知,当OE与OF,或OF与EF垂直时有一个公共点且满足内联点的定义,故由此可作图,作图见解析,即可由勾股定理、斜率的性质,解得和(1)①如图所示,由图像可知C,A点是关于点B的内联点②如图所示,当点B为圆心的圆与AO线段相切时,有一个公共点,符合内联点定义故.(2)如图所示,以O为圆心的圆O为点F点的运动轨迹,由(1)问可知当∠EFO或∠FOE为90°时,关于点E的内联点存在且只有一个,故当F点运动到和的范围内时,关于点E的内联点存在.设F点坐标为(x,y),则,由图象即题意知当F点在点时,,即有,当F点在点时,,即有即当F点在点时,,即有即解得或故,当F点在点时,, 即化简得且即即化简得联立解得或x=0故综上所述,F点的横坐标n取值范围为和.【点睛】本题考查了有关圆和三角形的新定义概念的综合题目,结合题意作出图象,运用数形结合的思想,熟练应用勾股定理以及斜率是解题的关键.2、(1)2(2)-2【解析】(1)解:=2-5+4+7-6=2+4+7-5-6=13-11=2;(2)解:=-2.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.3、(1);(2);(3)当,;当时,(4),,.【分析】(1)根据∠C=90°,AB=5,AC=4,得cosA=,即,又因为AP=4t,AQ=5t,即可得答案;(2)由AQPM,APQM,可得,证△CQM∽△CAB,可得答案;(3)当时,根据勾股定理和三角形面积可得;当,△PQM与△ABC的重合部分不为三角形;当时,由S=S△PQB-S△BPH计算得;(4)分3中情况考虑,①当N到A、C距离相等时,过N作NE⊥AC于E,过P作PF⊥AC于F,在Rt△APF中,cosA = ,解得t = ,②当N到A、B距离相等时,过N作NG⊥AB于G,同理解得t = ,③当N到B、C距离相等时,可证明AP=BP=AB=,可得答案.【详解】(1)如下图:∵∠C=90°,AB=5,AC=4,∴cosA=∵PQ⊥AB,∴cosA=∵动点P从点A出发,沿AB以每秒4个单位长度的速度向终点B运动,点P运动的时间为t(t>0)秒,∴AP=4t,∴∴AQ=5t,∴CQ=AC-AQ=4-5t,故答案为:4-5t;(2)∵AQPM,APQM,∴四边形AQMP是平行四边形.∴.当点M落在BC上时,∵APQM,∴.∵,∴△CQM∽△CAB,∴.∴.∴.∴当点M落在BC上时,;(3)当时,此时△PQM与△ABC的重合部分为三角形,由(1)(2)知:,,∴PQ=,∵∠PQM=∠QPA=90°∴,当Q与C重合时,CQ=0,即4-5t=0,∴当,△PQM与△ABC的重合部分不为三角形,当时,如下图:∵,∴PB=5-4t,∵PMAC∴,即∴,∵,∴,∴,∴S=S△PQB-S△BPH, .综上所述:当,;当时,(4)①当N到A、C距离相等时,过N作NE⊥AC于E,过P作PF⊥AC于F,如图:∵N到A、C距离相等,NE⊥AC,∴NE是AC垂直平分线,∴AE=AC= 2,∵N是PM中点,∴PN=PM=AQ= ∴AF=AE- EF=2- 在Rt△APF中,cosA = ∴ 解得t = ②当N到A、B距离相等时,过N作NG⊥AB于G,如图:∴AG=AB=∴PG=AG-AP=-4t∴cos∠NPG=cosA= ∴ 而PN=PM=AQ=t∴ 解得t = ③当N到B、C距离相等时,连接CP,如图:∵PMAC,AC⊥BC∴PM⊥BC,∴N到B、C距离相等,∴N在BC的垂直平分线上,即PM是BC的垂直平分线,∴PB= PC,∴∠PCB=∠PBC,∴90°-∠PCB= 90°-∠PBC,即∠PCA=∠PAC,∴PC= PA,∴AP=BP=AB=,∴t= 综上所述,t的值为或或【点睛】本题考查三角形综合应用,涉及平行四边形、三角形面积、垂直平分线等知识,解题的关键是分类画出图形,熟练应用锐角三角函数列方程.4、10元或20元【分析】设每件童装应降价x元,根据题意列出一元二次方程,解方程求解即可【详解】解:设每件童装应降价x元根据题意,得解这个方程,得 答:每件童装应降价10元或20元.【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.5、,【分析】先对括号里进行通分、合并同类项,然后进行乘除运算化为最简,最后代值求解即可.【详解】解:原式当时,原式.【点睛】本题考查了分式的混合运算以及二次根式的混合运算.解题的关键在于熟练掌握混合运算的运算法则.
相关试卷
这是一份2023年内蒙古赤峰市中考数学真题(含解析),共28页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年内蒙古赤峰市中考数学真题(解析版),共29页。试卷主要包含了 下列运算正确的是, 已知,则的值是, 化简的结果是等内容,欢迎下载使用。
这是一份精品解析:2022年内蒙古赤峰市中考数学真题(解析版),共32页。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)