【高频真题解析】2022年天津市中考数学真题模拟测评 (A)卷(含答案及详解)
展开
这是一份【高频真题解析】2022年天津市中考数学真题模拟测评 (A)卷(含答案及详解),共20页。试卷主要包含了若单项式与是同类项,则的值是,下列说法正确的有等内容,欢迎下载使用。
2022年天津市中考数学真题模拟测评 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、的相反数是( )A. B. C. D.32、若,则的值是( )A. B.0 C.1 D.20223、一个两位数,十位上的数字是x,个位上的数字比十位上的数字的3倍少4,这个两位数可以表示为( )A.x(3x-4) B.x(3x+4) C.13x+4 D.13x-44、如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=( )A.25° B.27° C.30° D.45°5、质检部门从同一批次1000件产品中随机抽取100件进行检测,检测出次品3件,由此估计这一批次产品中次品件数是( )A.60 B.30 C.600 D.3006、若单项式与是同类项,则的值是( )A.6 B.8 C.9 D.127、在2,1,0,-1这四个数中,比0小的数是( )A.2 B.0 C.1 D.-18、下列说法正确的有( ) ①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④若AC=BC,则点C是线段AB的中点; ⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直.A.1个 B.2个 C.3个 D.4个9、已知关于的分式方程无解,则的值为( )A.0 B.0或-8 C.-8 D.0或-8或-410、下列方程中,关于x的一元二次方程的是( )A.x2-1=2x B.x3+2x2=0 C. D.x2-y+1=0第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,从一块直径为2cm的圆形铁皮上剪出一圆心角为90°的扇形,则此扇形的面积为______cm2.2、背面完全相同的四张卡片,正面分别写着数字-4,-1,2,3,背面朝上并洗匀,从中随机抽取一张,将卡片上的数字记为,再从余下的卡片中随机抽取一张,将卡片上的数字记为,则点在第四象限的概率为__________.3、己知等腰三角形两条边长分别是4和10,,则此三角形的周长是___________________4、-3.6的绝对值是______.5、如图,在中,是边的垂直平分线,,的周长为23,则的周长为_________.三、解答题(5小题,每小题10分,共计50分)1、计算(1);(2).2、计算:3、某中学九年级学生共进行了五次体育模拟测试,已知甲、乙两位同学五次模拟测试成绩的均分相同,小明根据甲同学的五次测试成绩绘制了尚不完整的统计表,并给出了乙同学五次测试成绩的方差的计算过程.甲同学五次体育模拟测试成绩统计表:次数第一次第二次第三次第四次第五次成绩(分)252927a30小明将乙同学五次模拟测试成绩直接代入方差公式,计算过程如下:(分2)根据上述信息,完成下列问题:(1)a的值是______;(2)根据甲、乙两位同学这五次模拟测试成绩,你认为谁的体育成绩更好?并说明理由;(3)如果甲再测试1次,第六次模拟测试成绩为28分,与前5次相比,甲6次模拟测试成绩的方差将______.(填“变大”“变小”或“不变”)4、(问题)老师上完《7.3特殊角的三角函数》一课后,提出了一个问题,让同学们尝试去探究75°的正弦值.小明和小华经过思考与讨论,作了如下探索:(方案一)小明构造了图1,在△ABC中,AC=2,∠B=30°, ∠C=45°.第一步:延长BA,过点C作CD⊥BA,垂足为D,求出DC的长;第二步:在Rt△ADC中,计算sin75°.(方案二)小华构造了图2,边长为a的正方形ABCD的顶点A在直线EF上,且∠DAF=30°.第一步:连接AC,过点C作CGEF,垂足为G,用含a的代数式表示AC和CG的长:第二步:在Rt△AGC中,计算sin75°请分别按照小明和小华的思路,完成解答过程,5、定义:若实数x,y,,,满足,(k为常数,),则在平面直角坐标系中,称点为点的“k值关联点”.例如,点是点的“4值关联点”.(1)判断在,两点中,哪个点是的“k值关联点”;(2)设两个不相等的非零实数m,n满足点是点的“k值关联点”,则_______________ -参考答案-一、单选题1、D【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】解:的相反数是3,故选D.【点睛】本题考查了相反数的定义,只有符号不同的两个数是互为相反数,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2、C【分析】先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可.【详解】解:∵,∴a-2=0,b+1=0,∴a=2,b=-1,∴=,故选C.【点睛】本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键.3、D【分析】因为两位数十位数字个位数字,所以求得个位数字是,可得这个两位数可表示为.【详解】解:十位上的数字是x,个位上的数字比十位上的数字的3倍少4,个位数字是,这个两位数可表示为,故选:D.【点睛】本题考查了列代数式,解题的关键是掌握两位数的表示方法.4、B【分析】根据BE⊥AC,AD=CD,得到AB=BC,∠ABC,证明△ABD≌△CED,求出∠E=∠ABE=27°.【详解】解:∵BE⊥AC,AD=CD,∴BE是AC的垂直平分线,∴AB=BC,∴∠ABC=27°,∵AD=CD,BD=ED,∠ADB=∠CDE,∴△ABD≌△CED,∴∠E=∠ABE=27°,故选:B.【点睛】此题考查了线段垂直平分线的性质,全等三角形的判定及性质,熟记线段垂直平分线的性质是解题的关键.5、B【分析】根据样本的百分比为,用1000乘以3%即可求得答案.【详解】解:∵随机抽取100件进行检测,检测出次品3件,∴估计1000件产品中次品件数是故选B【点睛】本题考查了根据样本求总体,掌握利用样本估计总体是解题的关键.6、C【分析】根据同类项的定义可得,代入即可求出mn的值.【详解】解:∵与是同类项,∴,解得:m=3,∴.故选:C.【点睛】此题考查了同类项的定义,解题的关键是熟练掌握同类项的定义.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也相同,那么就称这两个单项式为同类项.7、D【分析】根据正数大于零,零大于负数,即可求解.【详解】解:在2,1,0,-1这四个数中,比0小的数是-1故选:D【点睛】本题主要考查了有理数的大小比较,熟练掌握正数大于零,零大于负数是解题的关键.8、B【分析】根据线段的性质,对顶角相等的性质,平行公理,对各小题分析判断即可得解.【详解】解:①两点之间的所有连线中,线段最短,正确;②相等的角不一定是对顶角,但对顶角相等,故本小题错误;③过直线外一点有且仅有一条直线与已知直线平行,故本小题错误;④若AC=BC,且A、B、C三点共线,则点C是线段AB的中点,否则不是,故本小题错误,⑤在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;所以,正确的结论有①⑤共2个.故选:B.【点睛】本题考查了平行公理,线段的性质,对顶角的判断,是基础题,熟记概念与性质是解题的关键.9、D【分析】把分式方程转化为整式方程,分分母为零无解,分母为零时,对应的字母值求解.【详解】∵∴,∴,∴,∴当m+4=0时,方程无解,故m= -4;∴当m+4≠0,x=2时,方程无解,∴故m=0;∴当m+4≠0,x= -2时,方程无解,∴故m=-8;∴m的值为0或-8或-4,故选D.【点睛】本题考查了分式方程的无解,正确理解无解的条件和意义是解题的关键.10、A【分析】只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.【详解】解:A、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意;B、未知数最高次数是3,不是关于x的一元二次方程,不符合题意;C、为分式方程,不符合题意;D、含有两个未知数,不是一元二次方程,不符合题意故选:A.【点睛】本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.二、填空题1、【分析】连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式进行求解即可.【详解】解:如图,连接AC,∵从一块直径为2cm的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°,∴AC为直径,即AC=2cm,AB=BC(扇形的半径相等),∵在中,,∴AB=BC=,∴阴影部分的面积是 (cm2).故答案为:.【点睛】本题考查了圆周角定理和扇形的面积计算,熟记扇形的面积公式是解题的关键.2、【分析】第四象限点的特征是,所以当横坐标只能为2或3,纵坐标只能是或,画出列表图或树状图,算出满足条件的情况,进一步求得概率即可.【详解】如下图: -4-123-4 -1 2 3 ∵第四象限点的坐标特征是,∴满足条件的点分别是: ,共4种情况,又∵从列表图知,共有12种等可能性结果,∴点在第四象限的概率为.故答案为:【点睛】本题主要考察概率的求解,要熟悉树状图或列表图的要点是解题关键.3、24【分析】分两种情考虑:腰长为4,底边为10;腰长为10,底边为4.根据这两种情况即可求得三角形的周长.【详解】当腰长为4,底边为10时,因4+4<10,则不符合构成三角形的条件,此种情况不存在;当腰长为10,底边为4时,则三角形的周长为:10+10+4=24.故答案为:24【点睛】本题考查了等腰三角形的性质及周长,要注意分类讨论.4、3.6【分析】根据绝对值的性质解答.【详解】解:-3.6的绝对值是3.6,故答案为:3.6.【点睛】此题考查了求一个数的绝对值,正确掌握绝对值的性质是解题的关键.5、33【分析】根据线段垂直平分线的性质,可得AD=CD,AC=2AE= ,再由的周长为23,可得AB+BC= ,即可求解.【详解】解:∵是边的垂直平分线,∴AD=CD,AC=2AE= ,∴AD+BD=CD+BD=BC,∵的周长为23,∴AB+AD+BD=AB+BC= ,∴的周长为 .故答案为:33【点睛】本题主要考查了线段垂直平分线的性质定理,熟练掌握线段垂直平分线上的点到线段两端的距离相等是解题的关键.三、解答题1、(1)7(2)【分析】(1)先算乘除和绝对值,再算加减法;(2)先算乘方,再算乘除,最后算加减.【小题1】解:==;【小题2】===【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.2、【分析】先根据绝对值的意义、负整数指数幂的性质、二次根式的化简和零指数幂分别化简,再计算即可.【详解】解:原式【点睛】此题考查了实数的混合运算,掌握相应的运算性质和运算法则是解答此题的关键.3、(1)29(2)乙的体育成绩更好,理由见解析(3)变小【分析】(1)根据平均分相同,根据乙的方差公式可得乙的平均分为28,则甲的平均分也为28,进而求得的值;(2)根据甲的成绩计算甲的方差,比较甲乙的方差,方差小的体育成绩更好;(3)根据第六次的成绩等于平均数,根据方差公式可知方差将变小.(1)解:甲、乙两位同学五次模拟测试成绩的均分相同,乙的方差为:则平均分为28所以甲的平均分为28则解得故答案为:29(2)乙的成绩更好,理由如下,乙的成绩较稳定,则乙的体育成绩更好(3)甲6次模拟测试成绩的方差将变小故答案为:变小【点睛】本题考查了求方差,平均数,根据方差判断稳定性,掌握求方差的公式是解题的关键.4、答案见解析【分析】[方案一]延长BA,过点C作CD⊥BA,垂足为D,过A作AM⊥BC于M,在△ACM中,AC=2,∠ACB=45°,由三角函数得到,在△ABM中,求出AB、BM,得到BC,根据面积相等求出CD,由此求出答案;[方案二]连接,过点C作,垂足为G,延长,交于点H.先求出AC,由,,求出DH,得到CH的长,根据,求出CG,即可利用公式求出sin75°的值.【详解】[方案一]解:延长BA,过点C作CD⊥BA,垂足为D,过A作AM⊥BC于M,∵∠B=30°,∠ACB=45°,∴在△ACM中,AC=2,∠ACB=45°.∴.在△ABM中,∠B=30°,,,∴. ∵∴,∴;[方案二]解:连接,过点C作,垂足为G,延长,交于点H.∵正方形的边长为a,∴,.∴,.∵,,∴.∴.又∵,∴.∵中,,∴.【点睛】此题考查了解直角三角形,正方形的性质,等腰三角形的性质,直角三角形30度角的性质,利用面积法求三角形的高线,各特殊角度的三角函数值,正确掌握各知识点并综合应用是解题的关键.5、(1)(2)−3【分析】(1)根据“k值关联点”的含义,只要找到k的值,且满足,即可作出判断,这只要根据,若两式求得的k的值相等则是,否则不是;(2)根据“k值关联点”的含义得到两个等式,消去k即可求得mn的值.(1)对于点A:∵∴点不是的“k值关联点”;对于点B:∵∴点是的“值关联点”;(2)∵点是点的“k值关联点”∴得:即∵∴故答案为:−3【点睛】本题是材料题,考查了点的坐标,消元思想,关键是读懂题目,理解题中的“k值关联点”的含义.
相关试卷
这是一份【高频真题解析】2022年中考数学真题模拟测评 (A)卷(含答案详解),共22页。试卷主要包含了计算3.14-的结果为 .,不等式+1<的负整数解有,下列分式中,最简分式是,下列解方程的变形过程正确的是,下列等式成立的是等内容,欢迎下载使用。
这是一份【历年真题】最新中考数学真题模拟测评 (A)卷(含答案及详解),共25页。试卷主要包含了点P,二次函数y=等内容,欢迎下载使用。
这是一份【历年真题】:中考数学真题模拟测评 (A)卷(含答案详解),共23页。试卷主要包含了在数2,-2,,中,最小的数为,若,则值为,观察下列图形,一组样本数据为1等内容,欢迎下载使用。