【高频真题解析】2022年吉林省四平市中考数学模拟测评 卷(Ⅰ)(精选)
展开2022年吉林省四平市中考数学模拟测评 卷(Ⅰ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知,则代数式的值是( )
A.﹣3 B.3 C.9 D.18
2、下列说法正确的是( )
A.的系数是 B.的次数是5次
C.的常数项为4 D.是三次三项式
3、对于反比例函数,下列结论错误的是( )
A.函数图象分布在第一、三象限
B.函数图象经过点(﹣3,﹣2)
C.函数图象在每一象限内,y的值随x值的增大而减小
D.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y2
4、一种药品经过两次降价,药价从每盒60元下调至48.6元,设平均每次降价的百分率为x,根据题意所列方程正确的是( )
A. B. C. D.
5、人类的遗传物质是DNA,其中最短的22号染色体含 30000000个核苷酸,30000000用科学记数法表示为( )
A.3×106 B.3×107 C.3×108 D.0.3×108
6、若二次函数的图象经过点,则a的值为( )
A.-2 B.2 C.-1 D.1
7、下列命题错误的是( )
A.所有的实数都可用数轴上的点表示 B.两点之间,线段最短
C.无理数包括正无理数、0、负有理数 D.等角的补角相等
8、已知,,且,则的值为( )
A.1或3 B.1或﹣3 C.﹣1或﹣3 D.﹣1或3
9、下列说法正确的是( )
A.无限小数都是无理数
B.无理数都是无限小数
C.有理数只是有限小数
D.实数可以分为正实数和负实数
10、0.1234567891011……是一个无理数,其小数部分是由1开始依次写下递增的正整数得到的,则该无理数小数点右边的第2022位数字是( )
A.0 B.1 C.2 D.3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、将△ABC沿着DE翻折,使点A落到点A'处,A'D、A'E分别与BC交于M、N两点,且DE∥BC.已知∠A'NM=20°,则∠NEC=_____度.
2、已知关于x,y的二元一次方程组的解x,y互为相反数,则a的值为______.
3、一组数据8,2,6,10,5的极差是_________.
4、如图,中,,,,将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是____________.
5、把化为以度为单位,结果是______.
三、解答题(5小题,每小题10分,共计50分)
1、如图1,CA=CB,CD=CE,,AD、BE交于点H,连CH.
(1)∠AHE=______________.(用表示)
(2)如图2,连接CH,求证:CH平分∠AHE;
(3)如图3,若,P,Q 分别是AD,BE的中点,连接CP,PQ,CQ.请判断三角形PQC的形状,并证明.
2、计算
(1);
(2).
3、(问题)老师上完《7.3特殊角的三角函数》一课后,提出了一个问题,让同学们尝试去探究75°的正弦值.小明和小华经过思考与讨论,作了如下探索:
(方案一)小明构造了图1,在△ABC中,AC=2,∠B=30°, ∠C=45°.
第一步:延长BA,过点C作CD⊥BA,垂足为D,求出DC的长;
第二步:在Rt△ADC中,计算sin75°.
(方案二)小华构造了图2,边长为a的正方形ABCD的顶点A在直线EF上,且∠DAF=30°.
第一步:连接AC,过点C作CGEF,垂足为G,用含a的代数式表示AC和CG的长:
第二步:在Rt△AGC中,计算sin75°
请分别按照小明和小华的思路,完成解答过程,
4、如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x轴正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长交y轴于点E.
(1)求证:△OBC≌△ABD.
(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果变化,请说明理由.
(3)当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?
5、在正方形网格中,每个小正方形的边长为1,△ABC在平面直角坐标系中的位置如图所示.
(1)画出△ABC沿x轴翻折后的△A1B1C1;
(2)以点M为位似中心,在网格中作出△A1B1C1的位似图形△A2B2C2,使其位似比为2:1;
(3)点A2的坐标______;△ABC与△A2B2C2的周长比是______.
-参考答案-
一、单选题
1、C
【分析】
由已知得到,再将变形,整体代入计算可得.
【详解】
解:∵,
∴,
∴
=
=
=9
故选:C.
【点睛】
本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.
2、A
【分析】
根据单项式的系数、次数的定义以及多项式次数、项数、常数项的定义可解决此题.
【详解】
解:A、的系数是,故选项正确;
B、的次数是3次,故选项错误;
C、的常数项为-4,故选项错误;
D、是二次三项式,故选项错误;
故选A.
【点睛】
本题主要考查单项式的系数、次数的定义以及多项式次数、项数、常数项的定义,熟练掌握单项式的系数、次数的定义以及多项式次数、项数、常数项的定义是解决本题的关键.
3、D
【分析】
根据反比例函数的性质得出函数增减性以及所在象限和经过的点的特点分别分析得出即可.
【详解】
解:A、∵k=6>0,∴图象在第一、三象限,故A选项正确;
B、∵反比例函数,∴xy=6,故图象经过点(-3,-2),故B选项正确;
C、∵k>0,∴x>0时,y随x的增大而减小,故C选项正确;
D、∵不能确定x1和x2大于或小于0
∴不能确定y1、y2的大小,故错误;
故选:D.
【点睛】
本题考查了反比例函数(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
4、B
【分析】
根据等量关系:原价×(1-x)2=现价列方程即可.
【详解】
解:根据题意,得:,
故答案为:B.
【点睛】
本题考查一元二次方程的应用,找准等量关系列出方程是解答的关键.
5、B
【分析】
用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.
【详解】
解:30000000=3×107.
故选:B.
【点睛】
本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.
6、C
【分析】
把(-2,-4)代入函数y=ax2中,即可求a.
【详解】
解:把(-2,-4)代入函数y=ax2,得
4a=-4,
解得a=-1.
故选:C.
【点睛】
本题考查了点与函数的关系,解题的关键是代入求值.
7、C
【分析】
根据实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质,逐项判断即可求解.
【详解】
解:A、所有的实数都可用数轴上的点表示,该命题正确,故本选项不符合题意;
B、两点之间,线段最短,该命题正确,故本选项不符合题意;
C、0不是无理数,该命题错误,故本选项符合题意;
D、等角的补角相等,该命题正确,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质,命题的真假判断,熟练掌握实数与数轴的关系,线段的基本事实,无理数的分类,补角的性质是解题的关键.
8、A
【分析】
由题意利用乘方和绝对值求出x与y的值,即可求出x-y的值.
【详解】
解:∵,,
,
∴x=1,y=-2,此时x-y=3;
x=-1,y=-2,此时x-y=1.
故选:A.
【点睛】
此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键.
9、B
【分析】
根据定义进行判断即可.
【详解】
解:A中无限小数都不一定是无理数,其中无限循环小数为有理数,故本选项错误.
B中根据无理数的定义,无理数都是无限小数,故本选项正确.
C中有理数不只是有限小数,例如无限循环小数,故本选项错误;
D中实数可以分为正实数和负实数和0,故本选项错误;
故选:B.
【点睛】
本题考查了有理数,无理数,实数的定义.解题的关键在于正确区分各名词的含义.
10、A
【分析】
一位数字9个,两位数字90个,三位数字900个,由此算出2022处于三位数字的第几个数字求得答案即可.
【详解】
∵共有9个1位数,90个2位数,900个3位数,
∴2022-9-90×2=1833,
∴1833÷3=611,
∵此611是继99后的第611个数,
∴此数是710,第三位是0,
故从左往右数第2022位上的数字为0,
故选:A.
【点睛】
此题主要考查了规律型:数字的变化类,根据已知得出变化规律是解题关键.
二、填空题
1、140
【分析】
根据对顶角相等,可得∠CNE=20°,再由DE∥BC,可得∠DEN=∠CNE=20°,然后根据折叠的性质可得∠AED=∠DEN=20°,即可求解.
【详解】
解:∵∠A′NM=20°,∠CNE=∠A′NM,
∴∠CNE=20°,
∵DE∥BC,
∴∠DEN=∠CNE=20°,
由翻折性质得:∠AED=∠DEN=20°,
∴∠AEN=40°,
∴∠NEC=180°﹣∠AEN=180°﹣40°=140°.
故答案为:140
【点睛】
本题主要考查了折叠的性质,平行线的性质,熟练掌握图形折叠前后对应角相等,两直线平行,内错角相等是解题的关键.
2、-3
【分析】
两个方程相加得出3x+3y=3a+9,根据已知条件x,y互为相反数知x+y=0,得出关于a的方程,解方程即可.
【详解】
解:两个方程相加得:3x+3y=3a+9,
∵x、y互为相反数,
∴x+y=0,
∴3x+3y=0,
∴3a+9=0,
解得:a=-3,
故答案为:-3.
【点睛】
本题考查了二元一次方程组的解、互为相反数的性质;根据题意得出关于a的方程是解决问题的关键.
3、8
【分析】
根据“极差”的定义,求出最大值与最小值的差即可.
【详解】
解:最大值与最小值的差为极差,
所以极差为10-2=8,
故答案为:8.
【点睛】
本题考查了极差,掌握一组数据中最大值与最小值的差即为极差是正确判断的前提.
4、
【分析】
如图(见解析),过点作轴于点,点作轴于点,设,从而可得,先利用勾股定理可得,从而可得,再根据旋转的性质可得,然后根据三角形全等的判定定理证出,最后根据全等三角形的性质可得,由此即可得出答案.
【详解】
解:如图,过点作轴于点,点作轴于点,
设,则,
在中,,
在中,,
,
解得,
,
由旋转的性质得:,
,
,
,
在和中,,
,
,
,
故答案为:.
【点睛】
本题考查了勾股定理、旋转、点坐标等知识点,画出图形,通过作辅助线,正确找出两个全等三角形是解题关键.
5、35.2°
【分析】
根据角的单位制换算法则求解即可.
【详解】
,
,
,
.
故答案为:.
【点睛】
本题考查了角的单位制换算法则,掌握换算法则是解题关键.
三、解答题
1、(1);(2)证明见详解;(3)为等边三角形,证明见详解.
【分析】
(1)由题意及全等三角形的判定定理可得,再根据全等三角形的性质及三角形内角和外角的性质即可得出结果;
(2)过点C作,,由全等三角形的判定和性质可得:,,利用角平分线的判定即可证明;
(3)根据全等三角形的判定和性质可得:,,根据图形及角之间的关系可得,即可证明结论.
【详解】
解:(1)如图所示:设BC与AD相交于点F,
∵,
∴,即,
在与中,
,
∴,
∴,
∵,
∴,
∴,
故答案为:;
(2)如图所示:过点C作,,
∵,
∴,
在与中,
,
∴,
∴,
∴CH平分;
(3)为等边三角形,理由如下:
∵,
∴,,
∵P、Q为AD、BE中点,
∴,
在与中,
,
∴,
∴,,
∴,
∴为等边三角形.
【点睛】
题目主要考查全等三角形的判定和性质,角平分线的判定和性质,三角形内角和定理等,理解题意,熟练掌握,综合运用这些知识点是解题关键.
2、
(1)7
(2)
【分析】
(1)先算乘除和绝对值,再算加减法;
(2)先算乘方,再算乘除,最后算加减.
【小题1】
解:
=
=;
【小题2】
=
=
=
【点睛】
本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.
3、答案见解析
【分析】
[方案一]延长BA,过点C作CD⊥BA,垂足为D,过A作AM⊥BC于M,在△ACM中,AC=2,∠ACB=45°,由三角函数得到,在△ABM中,求出AB、BM,得到BC,根据面积相等求出CD,由此求出答案;[方案二]连接,过点C作,垂足为G,延长,交于点H.先求出AC,由,,求出DH,得到CH的长,根据,求出CG,即可利用公式求出sin75°的值.
【详解】
[方案一]
解:延长BA,过点C作CD⊥BA,垂足为D,过A作AM⊥BC于M,
∵∠B=30°,∠ACB=45°,
∴
在△ACM中,AC=2,∠ACB=45°.
∴.
在△ABM中,∠B=30°,,,
∴.
∵
∴,
∴;
[方案二]
解:连接,过点C作,垂足为G,延长,交于点H.
∵正方形的边长为a,
∴,.
∴,.
∵,,
∴.
∴.
又∵,
∴.
∵中,,
∴.
【点睛】
此题考查了解直角三角形,正方形的性质,等腰三角形的性质,直角三角形30度角的性质,利用面积法求三角形的高线,各特殊角度的三角函数值,正确掌握各知识点并综合应用是解题的关键.
4、(1)见解析;(2)点C在运动过程中,∠CAD的度数不会发生变化,∠CAD=60°;(3)当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.
【分析】
(1)先根据等边三角形的性质得∠OBA=∠CBD=60°,OB=BA,BC=BD,则∠OBC=∠ABD,然后可根据“SAS”可判定△OBC≌△ABD;
(2)由△AOB是等边三角形知∠BOA=∠OAB=60°,再由△OBC≌△ABD知∠BAD=∠BOC=60°,根据∠CAD=180°-∠OAB-∠BAD可得结论;
(3)由(2)易求得∠EAC=120°,进而得出以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,最后根据Rt△AOE中,OA=1,∠OEA=30°,求得AC=AE=2,据此得到OC=1+2=3,即可得出点C的位置.
【详解】
解:(1)∵△AOB,△CBD都是等边三角形,
∴OB=AB,CB=DB,∠ABO=∠DBC,
∴∠OBC=∠ABD,
在△OBC和△ABD中,
∵,
∴△OBC≌△ABD(SAS);
(2)点C在运动过程中,∠CAD的度数不会发生变化,理由如下:
∵△AOB是等边三角形,
∴∠BOA=∠OAB=60°,
∵△OBC≌△ABD,
∴∠BAD=∠BOC=60°,
∴∠CAD=180°-∠OAB-∠BAD=60°;
(3)由(2)得∠CAD=60°,
∴∠EAC=180°-∠CAD =120°,
∴∠OEA=∠EAC-90°=30°,
∴以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,
在Rt△AOE中,OA=1,∠OEA=30°,
∴AE=2,
∴AC=AE=2,
∴OC=1+2=3,
∴当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.
【点睛】
本题是三角形的综合问题,主要考查了全等三角形的判定与性质,等边三角形的性质的运用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.解决本题的关键是利用等腰三角形的性质求出点C的坐标.
5、
(1)见解析
(2)见解析
(3),
【分析】
(1)利用网格特点和旋转的性质画出A、B的对应点A1、B1即可;
(2)延长M A1到A2使MA2=2MA1,延长MB1到B2使MB2=2MB1,延长MC1到C2使MC2=2MC1,则可得到△A2B2C2,
(3)根据(2)可写出点A2的坐标;然后根据位似的性质可得△ABC与△A2B2C2的周长比
(1)
如图,△A1B1C1即为所作;
(2)
如图,△A2B2C2即为所作;
(3)
由(2)得,点的坐标,
由作图得,
∵与周长比为1:2
∴△ABC与△A2B2C2的周长比是1:2
故答案为:,1:2
【点睛】
本题考查了作图-位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.也考查了轴对称变换.
【高频真题解析】2022年河北省中考数学模拟真题测评 A卷(精选): 这是一份【高频真题解析】2022年河北省中考数学模拟真题测评 A卷(精选),共25页。试卷主要包含了方程的解为,把分式化简的正确结果为,一元二次方程的一次项的系数是等内容,欢迎下载使用。
【高频真题解析】2022年最新中考数学模拟真题测评 A卷(精选): 这是一份【高频真题解析】2022年最新中考数学模拟真题测评 A卷(精选),共21页。试卷主要包含了下列各式,下列说法正确的是.,不等式+1<的负整数解有,计算12a2b4•÷的结果等于,分式方程有增根,则m为等内容,欢迎下载使用。
【真题汇总卷】2022年吉林省四平市中考数学模拟专项测评 A卷(含答案解析): 这是一份【真题汇总卷】2022年吉林省四平市中考数学模拟专项测评 A卷(含答案解析),共21页。试卷主要包含了已知点A,已知和是同类项,那么的值是,正八边形每个内角度数为,下列说法正确的是等内容,欢迎下载使用。