[中考专题]最新中考数学真题模拟测评 (A)卷(含答案详解)
展开最新中考数学真题模拟测评 (A)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是( )
A.两点确定一条直线 B.经过一点有无数条直线
C.两点之间,线段最短 D.一条线段等于已知线段
2、下列方程是一元二次方程的是( )
A.x2+3xy=3 B.x2+=3 C.x2+2x D.x2=3
3、如图,DE是的中位线,若,则BC的长为( )
A.8 B.7 C.6 D.7.5
4、如图,OM平分,,,则( ).
A.96° B.108° C.120° D.144°
5、下列计算错误的是( )
A. B. C. D.
6、下列命题中,真命题是( )
A.同位角相等
B.有两条边对应相等的等腰三角形全等
C.互余的两个角都是锐角
D.相等的角是对顶角.
7、为庆祝中国共产党成立100周年,某学校开展学习“四史”(《党史》、《新中国史》、《改革开放史》、《社会主义发展史》)交流活动,小亮从这四本书中随机选择1本进行学习心得体会分享,则他恰好选到《新中国史》这本书的概率为( )
A. B. C. D.1
8、下列式中,与是同类二次根式的是( )
A. B. C. D.
9、下列命题中,是真命题的是( )
A.一条线段上只有一个黄金分割点
B.各角分别相等,各边成比例的两个多边形相似
C.两条直线被一组平行线所截,所得的线段成比例
D.若2x=3y,则
10、已知抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论中:①;②;③抛物线与轴的另一个交点的坐标为;④方程有两个不相等的实数根.其中正确的个数为( )
A.个 B.个 C.个 D.个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在中,,,射线AF是的平分线,交BC于点D,过点B作AB的垂线与射线AF交于点E,连结CE,M是DE的中点,连结BM并延长与AC的延长线交于点G.则下列结论正确的是______.
① ②BG垂直平分DE ③ ④ ⑤
2、如图,在中,,平分,,点到的距离为5.6,则___.
3、如图,在半径为5的⊙O中,弦AB=6,OC⊥AB于点D,交⊙O于点C,则CD=_____.
4、如图,在△ABC中,AB=12,BC=15,D为BC上一点,且BD=BC,在AB边上取一点E,使以B,D,E为顶点的三角形与△ABC相似,则BE=_____.
5、已知点P在线段AB上,如果AP2=AB•BP,AB=4,那么AP的长是_____.
三、解答题(5小题,每小题10分,共计50分)
1、分解因式:
(1);
(2).
2、解下列方程:
(1)
(2)
3、先化简,再求值:a2b-[3ab2-2(-3a2b+ab2)],其中a=1,b=-.
4、如图,已知在△ABC中,AB=AC,∠BAC=80°,AD⊥BC,AD=AB,联结BD并延长,交AC的延长线干点E,求∠ADE的度数.
5、如图,已知二次函数y=ax2+bx+1的图象经过点A(﹣1,6)与B(4,1)两点.
(1)求这个二次函数的表达式;
(2)在图中画出该二次函数的图象;
(3)结合图象,写出该函数的开口方向、对称轴和顶点坐标.
-参考答案-
一、单选题
1、C
【分析】
根据线段的性质进行解答即可.
【详解】
解:最短的路线选①的理由是两点之间,线段最短,
故选:C.
【点睛】
本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短.
2、D
【分析】
根据一元二次方程的定义逐个判断即可.只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
【详解】
解:A.是二元二次方程,不是一元二次方程,故本选项不符合题意;
B.是分式方程,故本选项不符合题意;
C.不是方程,故本选项不符合题意;
D.是一元二次方程,故本选项符合题意;
故选:D.
【点睛】
本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.
3、A
【分析】
已知DE是的中位线,,根据中位线定理即可求得BC的长.
【详解】
是的中位线,,
,
故选:A.
【点睛】
此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键.
4、B
【分析】
设,利用关系式,,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值.
【详解】
解:设,
∵,
∴,
∴.
∵,
∴,
∴.
∵OM平分,
∴,
∴,解得.
.
故选:B.
【点睛】
本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.
5、A
【分析】
直接利用二次根式的性质以及二次根式的乘法运算法则化简,进而判断即可.
【详解】
解:A.,故此选项计算错误,符合题意;
B.,故此选项计算正确,不合题意;
C.,故此选项计算正确,不合题意;
D.,故此选项计算正确,不合题意;
故选:A.
【点睛】
此题考查了二次根式的性质及二次根式的乘法运算法则,熟记乘法法则是解题的关键.
6、C
【分析】
根据平行线的性质、全等三角形的判定定理、余角的概念、对顶角的概念判断即可.
【详解】
解:A、两直线平行,同位角相等,故本选项说法是假命题;
B、有两条边对应相等的等腰三角不一定形全等,故本选项说法是假命题;
C、互余的两个角都是锐角,本选项说法是真命题;
D、相等的角不一定是对顶角,例如,两直线平行,同位角相等,此时两个同位角不是对顶角,故本选项说法是假命题;
故选:C.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
7、A
【分析】
直接根据概率公式求解即可.
【详解】
解:由题意得,他恰好选到《新中国史》这本书的概率为,
故选:A.
【点睛】
本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.
8、A
【分析】
先根据二次根式的性质化成最简二次根式,再看看被开方数是否相同即可.
【详解】
解:A、,即化成最简二次根式后被开方数相同(都是5),所以是同类二次根式,故本选项符合题意;
B、最简二次根式和的被开方数不相同,所以不是同类二次根式,故本选项不符合题意;
C、,即化成最简二次根式后被开方数不相同,所以不是同类二次根式,故本选项不符合题意;
D、,即化成最简二次根式后被开方数不相同,所以不是同类二次根式,故本选项不符合题意;
故选:A.
【点睛】
本题考查了二次根式的性质与化简和同类二次根式的定义,能熟记同类二次根式的定义是解此题的关键.
9、B
【分析】
根据黄金分割的定义对A选项进行判断;根据相似多边形的定义对B选项进行判断;根据平行线分线段成比例定理对C选项进行判断;根据比例的性质对D选项进行判断.
【详解】
解:A.一条线段上有两个黄金分割点,所以A选项不符合题意;
B.各角分别相等,各边成比例的两个多边形相似,所以B选项符合题意;
C.两条直线被一组平行线所截,所得的对应线段成比例,所以C选项不符合题意;
D.若2x=3y,则,所以D选项不符合题意.
故选:B.
【点睛】
本题考查了命题:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
10、C
【分析】
根据对称轴及抛物线与轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:①如图,开口向上,得,
,得,
抛物线与轴交于负半轴,即,
,
故①错误;
②如图,抛物线与轴有两个交点,则;
故②正确;
③由对称轴是直线,抛物线与轴的一个交点坐标为,得到:抛物线与轴的另一个交点坐标为,
故③正确;
④如图所示,当时,,
根的个数为与图象的交点个数,
有两个交点,即有两个根,
故④正确;
综上所述,正确的结论有3个.
故选:C.
【点睛】
主要考查抛物线与轴的交点,二次函数图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
二、填空题
1、①②⑤
【分析】
先由题意得到∠ABE=∠ACB=∠BCG=90°,∠BAC=45°,再由角平分线的性质得到∠BAE=∠DAC=22.5°,从而推出∠BEA=∠ADC,则∠BDE=∠BED,再由三线合一定理即可证明BM⊥DE,∠GBE=∠DBG,即可判断②;得到∠MAG+∠MGA=90°,再由∠CBG+∠CGB=90°,可得∠DAC=∠GBC=22.5°,则∠GBE=22.5°,2∠GBE=45°,从而可证明△ACD≌△BCG,即可判断①;则CD=CG,再由AC=BC=BD+CD,可得到AC=BE+CG,即可判断⑤;由∠G=180°-∠BCG-∠CBG=67.5°,即可判断④;延长BE交AC延长线于G,先证△ABH是等腰直角三角形,得到C为AH的中点,然后证BE≠HE,即E不是BH的中点,得到CE不是△ABH的中位线,则CE与AB不平行,即可判断③.
【详解】
解:∵∠ACB=90°,BE⊥AB,AC=BC,
∴∠ABE=∠ACB=∠BCG=90°,∠BAC=45°,
∴∠BAE+∠BEA=90°,∠DAC+∠ADC=90°,
∵AF平分∠BAC,
∴∠BAE=∠DAC=22.5°,
∴∠BEA=∠ADC,
又∵∠ADC=∠BDE,
∴∠BDE=∠BED,
∴BD=ED,
又∵M是DE的中点,
∴BM⊥DE,∠GBE=∠DBG,
∴BG垂直平分DE,∠AMG=90°,故②正确,
∴∠MAG+∠MGA=90°,
∵∠CBG+∠CGB=90°,
∴∠DAC=∠GBC=22.5°,
∴∠GBE=22.5°,
∴2∠GBE=45°,
又∵AC=BC,
∴△ACD≌△BCG(ASA),故①正确;
∴CD=CG,
∵AC=BC=BD+CD,
∴AC=BE+CG,故⑤正确;
∵∠G=180°-∠BCG-∠CBG=67.5°,
∴∠G≠2∠GBE,故④错误;
如图所示,延长BE交AC延长线于G,
∵∠ABH=∠ABC+∠CBH=90°,∠BAC=45°,
∴△ABH是等腰直角三角形,
∵BC⊥AH,
∴C为AH的中点,
∵AB≠AH,AF是∠BAH的角平分线,
∴BE≠HE,即E不是BH的中点,
∴CE不是△ABH的中位线,
∴CE与AB不平行,
∴BE与CE不垂直,故③错误;
故答案为:①②⑤.
【点睛】
本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,三角形中位线定理,三角形内角和定理,熟知等腰三角形的性质与判定条件是解题的挂件.
2、
【分析】
过D作DE⊥AB于E,根据角平分线性质得出CD=DE,再求出BD长,即可得出BC的长.
【详解】
解:如图,过D作DE⊥AB于E,
∵∠C=90°,
∴CD⊥AC,
∵AD平分∠BAC,
∴CD=DE,
∵D到AB的距离等于5.6cm,
∴CD=DE=5.6cm,
又∵BD=2CD,
∴BD=11.2cm,
∴BC=5.6+11.2=cm,
故答案为:.
【点睛】
本题主要考查了角平分线性质的应用,解题时注意:角平分线上的点到角两边的距离相等.
3、
【分析】
连接OA,先利用垂径定理得出AD的长,再由勾股定理得出OD的长即可解答.
【详解】
解:连接OA,
∵AB=6,OC⊥AB于点D,
∴AD=AB=×6=3,
∵⊙O的半径为5,
∴,
∴CD=OC-OD=5-4=1.
故答案为:1.
【点睛】
本题考查的是垂径定理及勾股定理,解答此题的关键是作出辅助线构造出直角三角形,再利用勾股定理求解.
4、4或
【分析】
以B,D,E为顶点的三角形与△ABC相似,则存在两种情况,即△BDE∽△BCA,也可能是△BDE∽△BAC,应分类讨论,求解.
【详解】
解:如图,DE//BC
①当∠AED=∠C时,即DE∥AC
则△BDE∽△BCA,
∴
∵BD=BC,
∴
∴
②当∠BED=∠C时,△BED∽△BCA
∴,即
∴
综上,BE=4或
故答案为4或
【点睛】
此题考查了相似三角形的性质,会利用相似三角形求解一些简单的计算问题.
5、2﹣2
【分析】
先证出点P是线段AB的黄金分割点,再由黄金分割点的定义得到AP=AB,把AB=4代入计算即可.
【详解】
解:∵点P在线段AB上,AP2=AB•BP,
∴点P是线段AB的黄金分割点,AP>BP,
∴AP=AB=×4=2﹣2,
故答案为:2﹣2.
【点睛】
本题考查了黄金分割点,牢记黄金分割比是解题的关键.
三、解答题
1、
(1)
(2)
【分析】
(1)提取公因式,然后用完全平方公式进行化简即可.
(2)提取公因式,然后用平方差公式进行化简即可.
(1)
解:原式;
(2)
解:原式
.
【点睛】
本题考查了乘法公式进行因式分解.解题的关键在于熟练掌握乘法公式.
2、
(1);
(2).
【分析】
(1)去括号,移项合并,系数化1即可;
(2)首先分母化整数分母,去分母,去括号,移项,合并,系数化1即可.
(1)
解:,
去括号得:,
移项合并得:,
系数化1得:;
(2)
解:,
小数分母化整数分母得:,
去分母得:,
去括号得:,
移项得:,
合并得:,
系数化1得:.
【点睛】
本题考查一元一次方程的解法,掌握解一元一次方程的方法与步骤是解题关键.
3、,
【分析】
先去括号,然后根据整式的加减计算法则化简,最后代值计算即可.
【详解】
解:
,
当,时,原式.
【点睛】
本题主要考查了整式的化简求值,去括号,含乘方的有理数混合计算,熟知相关计算法则是解题的关键.
4、110°
【分析】
根据等腰三角形三线合一的性质可求∠BAD=∠CAD=∠BAC=40°,根据等腰三角形的性质可求∠BDA,再根据三角形内角和定理即可求解.
【详解】
解:∵AB=AC,∠BAC=80°,AD⊥BC,
∴∠BAD=∠CAD=∠BAC=40°,
∵AD=AB,
∴∠BDA=×(180°﹣40°)=70°,
∴∠ADE=180°﹣∠BDA=180°﹣70°=110°.
【点睛】
本题考查的是三角形的外角的性质,等腰三角形的性质,掌握“等边对等角,等腰三角形的三线合一”是解本题的关键.
5、
(1)
(2)见解析
(3)开口向上,对称轴为,顶点坐标为
【分析】
(1)根据待定系数法求二次函数解析式即可;
(2)根据顶点,对称性描出点,进而画出该二次函数的图形即可;
(3)根据函数图像直接写出开口方向、对称轴和顶点坐标.
(1)
将点A(﹣1,6)与B(4,1)代入y=ax2+bx+1
即
解得
(2)
由,确定顶点坐标以及对称轴,根据对称性求得描出点关于的对称点,作图如下,
(3)
根据图象可知,的图象开口向上,对称轴为,顶点坐标为
【点睛】
本题考查了待定系数法求解析式,画二次函数图象,的图象与性质,求得解析式是解题的关键.
【历年真题】最新中考数学真题模拟测评 (A)卷(含答案及详解): 这是一份【历年真题】最新中考数学真题模拟测评 (A)卷(含答案及详解),共25页。试卷主要包含了点P,二次函数y=等内容,欢迎下载使用。
[中考专题]最新中考数学模拟真题 (B)卷(含答案详解): 这是一份[中考专题]最新中考数学模拟真题 (B)卷(含答案详解),共26页。试卷主要包含了若,,且a,b同号,则的值为,下列各数中,是不等式的解的是,观察下列图形等内容,欢迎下载使用。
[中考专题]中考数学真题模拟测评 (A)卷(含答案详解): 这是一份[中考专题]中考数学真题模拟测评 (A)卷(含答案详解),共24页。试卷主要包含了已知线段AB,下列命题错误的是,下列计算正确的是等内容,欢迎下载使用。