【高频真题解析】2022年河南省周口市中考数学一模试题(含详解)
展开
这是一份【高频真题解析】2022年河南省周口市中考数学一模试题(含详解),共28页。试卷主要包含了和按如图所示的位置摆放,顶点B,已知的两个根为,下列二次根式中,最简二次根式是,下列说法中不正确的是等内容,欢迎下载使用。
2022年河南省周口市中考数学一模试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法正确的是( )A.任何数的绝对值都是正数 B.如果两个数不等,那么这两个数的绝对值也不相等C.任何一个数的绝对值都不是负数 D.只有负数的绝对值是它的相反数2、如图,是的外接圆,,则的度数是( )A. B. C. D.3、如图,中,,,AD平分交BC于点D,点E为AC的中点,连接DE,则的面积是( )A.20 B.16 C.12 D.104、如图,小玲将一个正方形纸片剪去一个宽为的长条后,再从剩下的长方形纸片上剪去一个宽为的长条,如果两次剪下的长条面积正好相等,那么原正方形的边长为( )cm.A. B. C. D.5、和按如图所示的位置摆放,顶点B、C、D在同一直线上,,,.将沿着翻折,得到,将沿着翻折,得,点B、D的对应点、与点C恰好在同一直线上,若,,则的长度为( ).A.7 B.6 C.5 D.46、已知的两个根为、,则的值为( )A.-2 B.2 C.-5 D.57、下列二次根式中,最简二次根式是( )A. B. C. D.8、如图,在梯形中,ADBC,过对角线交点的直线与两底分别交于点,下列结论中,错误的是( )A. B. C. D.9、下列说法中不正确的是( )A.平面内,垂直于同一条直线的两直线平行B.过一点有且只有一条直线与已知直线平行C.平面内,过一点有且只有一条直线与已知直线垂直D.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离10、一圆锥高为4cm,底面半径为3cm,则该圆锥的侧面积为( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、直接写出计算结果:(1)=____;(2)____;(3)=____;(4)102×98=____.2、已知抛物线y=(x﹣1)2有点A(0,y1)和B(3,y2),则y1___y2.(用“>”,“<”,“=”填写)3、定义:有一组对边相等而另一组对边不相等的凸四边形叫做“对等四边形”,如图,在中,,点A在边BP上,点D在边CP上,如果,,,四边形ABCD为“对等四边形”,那么CD的长为_____________.4、如图,直线,如果,,,那么线段BE的长是_____________.5、一杯饮料,第一次倒去全部的,第二次倒去剩下的 ……如此下去,第八次后杯中剩下的饮料是原来的________.三、解答题(5小题,每小题10分,共计50分)1、在中,,,,点为直线上一点,且.(1)如图1,点在线段延长线上,若,求的度数;(2)如图2,与在图示位置时,求证:平分;(3)如图3,若,,将图3中的(从与重合时开始)绕点按顺时针方向旋转一周,且点与点不重合,当为等腰三角形时,求的值.2、一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的的小正方体个数.(1)请画出从正面和从左面看到的这个几何体的形状图.(2)若小正方体的棱长为2,求该几何体的体积和表面积.3、如图,在的网格纸中,点O和点A都是格点,以O为圆心,OA为半径作圆.请仅用无刻度的直尺完成以下画图:(不写画法,保留作图痕迹.)(1)在图①中画⊙O的一个内接正八边形ABCDEFGH;(2)在图②中画⊙O的一个内接正六边形ABCDEF.4、如图,一次函数的图象交反比例函数的图象于,两点.(1)求反比例函数与一次函数解析式.(2)连接,求的面积.(3)根据图象直接回答:当为何值时,一次函数的值大于反比例函数的值?5、下列是我们常见的几何体,按要求将其分类(只填写编号).(1)如果按“柱”“锥球”来分,柱体有______,椎体有______,球有______;(2)如果按“有无曲面”来分,有曲面的有______,无曲面的有______. -参考答案-一、单选题1、C【分析】数轴上表示数的点与原点的距离是数的绝对值,非负数的绝对值是它的本身,非正数的绝对值是它的相反数,互为相反数的两个数的绝对值相等,再逐一分析各选项即可得到答案.【详解】解:任何数的绝对值都是非负数,故A不符合题意;如果两个数不等,那么这两个数的绝对值可能相等,也可能不相等,比方 但 故B不符合题意;任何一个数的绝对值都不是负数,表述正确,故C符合题意;非正数的绝对值是它的相反数,故D不符合题意;故选C【点睛】本题考查的是绝对值的含义,求解一个数的绝对值,掌握“绝对值的含义”是解本题的关键.2、C【分析】在等腰三角形OCB中,求得两个底角∠OBC、∠OCB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.【详解】解:在中,,;,,;又,,故选:.【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形的内角和定理,熟练掌握圆周角定理是解题的关键.3、D【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据勾股定理得出AD的长,从而求出三角形ABD的面积,再根据三角形的中线性质即可得出答案;【详解】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,,∴,∴,∵点E为AC的中点,∴,故选:D【点睛】本题考查了勾股定理,三角形的面积公式,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.4、B【分析】设正方形的边长为x cm,则第一个长条的长为x cm,宽为2cm,第二个长条的长为(x-2)cm,宽为3cm,根据两次剪下的长条面积正好相等列方程求解.【详解】解:设正方形的边长为x cm,则第一个长条的长为x cm,宽为2cm,第二个长条的长为(x-2)cm,宽为3cm,依题意得:2x=3(x-2),解得x=6故选:B.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正值列出一元一次方程是解题的关键.5、A【分析】由折叠的性质得,,故,,推出,由,推出,根据AAS证明,即可得,,设,则,由勾股定理即可求出、,由计算即可得出答案.【详解】由折叠的性质得,,∴,,∴,∵,∴,∴,在与中,,∴,∴,,设,则,∴,解得:,∴,,∴.故选:A.【点睛】本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键.6、B【分析】直接运用一元二次方程根与系数的关系求解即可.【详解】解:∵的两个根为、,∴故选:B【点睛】本题主要考查了一元二次方程根与系数的关系,若、为一元二次方程的两个实数根,则有,.7、D【分析】根据最简二次根式的条件分别进行判断.【详解】解:A.,不是最简二次根式,则A选项不符合题意;B.,不是最简二次根式,则B选项不符合题意;C.,不是最简二次根式,则C选项不符合题意;D.是最简二次根式,则D选项符合题意;故选:D.【点睛】题考查了最简二次根式:掌握最简二次根式的条件(被开方数的因数是整数或字母,因式是整式;被开方数中不含有可化为平方数或平方式的因数或因式)是解决此类问题的关键.8、B【分析】根据ADBC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.【详解】解:∵ADBC,∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,∴,故A正确,不符合题意;∵ADBC,∴△DOE∽△BOF,∴,∴,∴,故B错误,符合题意;∵ADBC,∴△AOD∽△COB,∴, ∴,故C正确,不符合题意;∴ ,∴,故D正确,不符合题意;故选:B【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.9、B【分析】根据点到直线的距离、垂直的性质及平行线的判定等知识即可判断.【详解】A、平面内,垂直于同一条直线的两直线平行,故说法正确;B.过直线外一点有且只有一条直线与已知直线平行,故说法错误;C.平面内,过一点有且只有一条直线与已知直线垂直,此说法正确;D.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离,这是点到直线的距离的定义,故此说法正确.故选:B【点睛】本题主要考查了垂直的性质、点到直线的距离、平行线的判定等知识,理解这些知识是关键.但要注意:平面内,垂直于同一条直线的两直线平行;平面内,过一点有且只有一条直线与已知直线垂直;这两个性质的前提是平面内,否则不成立.10、C【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,扇形的面积公式求解.【详解】解: ∵一圆锥高为4cm,底面半径为3cm,∴圆锥母线=,∴圆锥的侧面积=(cm2).故选C.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.二、填空题1、-12 -1 ax 9996 【分析】(1)先乘方,再加减即可;(2)逆用积的乘方法则进行计算;(3)运用幂的乘方法则,同底数幂的乘除法法则以及积的乘方法则计算即可;(4)运用平方差公式计算即可.【详解】解:(1)=﹣1+(﹣10)﹣1=﹣1﹣10﹣1=﹣12.故答案为:﹣12.(2)=()101×()101()101=﹣()101=﹣1.故答案为:﹣1.(3)=a2x﹣2•ax+1÷a2x﹣1=a2x﹣2+x+1﹣(2x﹣1)=ax.故答案为:ax.(4)102×98=(100+2)×(100﹣2)=100²﹣2²=9996.故答案为:9996.【点睛】本题考查了实数的运算,平方差公式,同底数幂的乘除法,幂的乘方与积的乘方,零指数幂,负整数指数幂,熟练掌握各运算法则是解题关键.2、<【分析】分别把A、B点的横坐标代入抛物线解析式求解即可.【详解】解:x=0时,y1=(0﹣1)2=1,x=3时,y3=(3﹣1)2=4,∴y1<y2.故答案为:<.【点睛】本题考查了二次函数图象上点的坐标特征,求出相应的函数值是解题的关键.3、13或12-或12+【分析】根据对等四边形的定义,分两种情况:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11;利用勾股定理和矩形的性质,求出相关相关线段的长度,即可解答.【详解】解:如图,点D的位置如图所示:①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,过点A分别作AE⊥BC,AF⊥PC,垂足为E,F,设BE=x,∵,∴AE=x,在Rt△ABE中,AE2+BE2=AB2,即x2+(x)2=132,解得:x1=5,x2=-5(舍去),∴BE=5,AE=12,∴CE=BC-BE=6,由四边形AECF为矩形,可得AF=CE=6,CF=AE=12,在Rt△AFD2中,FD2=,∴CD2=CF-FD2=12-,CD3=CF+FD2=12+,综上所述,CD的长度为13、12-或12+.故答案为:13、12-或12+.【点睛】本题主要考查了新定义,锐角三角函数,勾股定理等知识,解题的关键是理解并能运用“等对角四边形”这个概念.在(2)中注意分类讨论思想的应用、勾股定理的应用.4、3【分析】过点D作DG∥AC交CF于点G,交BE于点H,根据,可得,四边形ABHD和四边形ACGD是平行四边形,从而得到BH=AD=CG=2, ,进而得到FG=4,再由BE∥CF,得到△DEH∽△DFG,从而得到HE=1,即可求解.【详解】解:如图,过点D作DG∥AC交CF于点G,交BE于点H,∵,∴,四边形ABHD和四边形ACGD是平行四边形,∴BH=AD=CG=2, ,∵,∴FG=4,∵BE∥CF,∴△DEH∽△DFG,∴ ,∴HE=1,∴BE=BH+HE=3.故答案为:3【点睛】本题主要考查了平行线分线段成比例,平行四边形的判定和性质,相似三角形的性质和判定,熟练掌握平行线分线段成比例,平行四边形的判定和性质,相似三角形的性质和判定是解题的关键.5、 【分析】采用枚举法,计算几个结果,从结果中寻找变化的规律.【详解】设整杯饮料看成1,列表如下:次数倒出量剩余量第1次第2次第3次第4次故第8次剩下的饮料是原来的.故答案为:.【点睛】本题考查了有理数幂的运算,正确寻找变化的规律是解题的关键.三、解答题1、(1)25°(2)见解析(3)16或或【分析】(1)根据,得出,再根据,得,最后根据即可得出;(2)证明出即可求解;(3)分类讨论:①,重合,直接得出;②,,再在中利用勾股定理求解;③根据,得,再在中利用勾股定理求解.(1)解:如图:,,,,,,,,;(2)证:,在与,,,,平分;(3)解:如图:①,重合,②,,,,在中,,,在中,,③,,,,在中,,,,在中,,,,.【点睛】本题属于几何变换综合题,旋转、考查了等腰三角形的性质、三角形全等的判定及性质、三角形内角和,勾股定理,,解题的关键是利用特殊三角形的性质解决问题,学会用转化的思想思考问题,属于中考压轴题.2、(1)见解析;(2)104,192【分析】(1)根据从正面看,从左面看的定义,仔细画出即可;(2)体积等于立方体的个数×单个的体积;表面积等于上下面的个数即从上面看的图形正方形个数的2倍;左右看的正方形面数,前后看的正方形面数,其和乘以一个正方形的面积即可.(1)∵ ,∴ .(2)∵小正方体的棱长为2,∴每个小正方体的体积为2×2×2=8,∴该几何体的体积为(3+2+1+1+2+4)×8=104;∵ ,∴每个小正方形的面积为2×2=4,∴几何体的上下面的个数为6×2=12个,前后面的个数为6+2+8=16个,左右面的个数为4+3+2+3+4+4=20个,∴几何体的表面积为:(12+16+20)×4=192.【点睛】本题考查了从不同方向看,几何体体积和表面积,正确理解确定小正方体的个数是解题的关键.3、(1)见解析(2)见解析【分析】(1)在图①中画⊙O的一个内接正八边形ABCDEFGH即可;(2)在图②中画⊙O的一个内接正六边形ABCDEF即可.(1)解:如图,正八边形ABCDEFGH即为所求:(2)解:如图,正六边形ABCDEF即为所求:【点睛】本题考查了作图-应用与设计作图、正多边形和圆,解决本题的关键是准确画图.4、(1),;(2)15;(3)0<x<2或x>8.【分析】(1)先把点A的坐标代入,求出m的值得到反比例函数解析式,再求点B的坐标,然后代入反比例函数解析式求出点B的坐标,再将A、B两点的坐标代入y=kx+b,利用待定系数法求出一次函数的解析式;(2)先求出C点坐标,再根据△AOB的面积=△AOC的面积-三角形BOC的面积即可求解;(3)观察函数图象即可求得.(1)解:把A(2,-4)的坐标代入得:m=-8,∴反比例函数的解析式是;把B(a,-1)的坐标代入得:-1=,解得:a=8,∴B点坐标为(8,-1),把A(2,-4)、B(8,-1)的坐标代入y=kx+b,得:,解得: ,∴一次函数解析式为;(2)解:设直线AB交x轴于C.∵,∴当y=0时,x=10,∴OC=10,∴△AOB的面积=△AOC的面积-三角形BOC的面积=;(3)解:由图象知,当0<x<2或x>8时,一次函数的值大于反比例函数的值.【点睛】本题主要考查了反比例函数图象与一次函数图象的交点问题以及观察图象的能力,待定系数法求函数解析式,求出点B的坐标是解题的关键.5、(1)①②⑥;③④;⑤(2)②③⑤;①④⑥【分析】(1)根据立体图形的特点从柱体的形状特征考虑.(2)根据面的形状特征考虑.(1)解:∵(1)是四棱柱,(2)是圆柱,(3)是圆锥,(4)是棱锥,(5)是球,(6)是三棱柱,∴柱体有(1),(2),(6),锥体有(3),(4),球有(5),故答案为:(1),(2),(6);(3),(4);(5);(2)∵(2)(3)(5)有曲面,其它几何体无曲面,∴按“有无曲面”来分,有曲面的有(2),(3),(5),无曲面的有:(1),(4),(6),故答案为:(2),(3),(5);(1),(4),(6).【点睛】本题考查了认识立体图形,解决本题的关键是认识柱体的形状特征.
相关试卷
这是一份【历年真题】中考数学一模试题(含答案及详解),共24页。试卷主要包含了已知等腰三角形的两边长满足+,有下列四种说法,下列说法中正确的个数是等内容,欢迎下载使用。
这是一份【高频真题解析】中考数学一模试题(含答案解析),共24页。试卷主要包含了已知等腰三角形的两边长满足+,计算12a2b4•÷的结果等于,下列运算中,正确的是,方程的解为等内容,欢迎下载使用。
这是一份【历年真题】2022年河南省郑州市中考数学一模试题(含答案详解),共24页。试卷主要包含了的值.等内容,欢迎下载使用。