【高频真题解析】2022年北京市门头沟区中考数学备考模拟练习 (B)卷(精选)
展开
这是一份【高频真题解析】2022年北京市门头沟区中考数学备考模拟练习 (B)卷(精选),共29页。试卷主要包含了的相反数是等内容,欢迎下载使用。
2022年北京市门头沟区中考数学备考模拟练习 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若关于x的不等式组无解,则m的取值范围是( )A. B. C. D.2、一队同学在参观花博会期间需要在农庄住宿,如果每间房住4个人,那么有8个人无法入住,如果每间房住5个人,那么有一间房空了3个床位,设这队同学共有人,可列得方程( )A. B.C. D.3、如图,五边形中,,CP,DP分别平分,,则( )A.60° B.72° C.70° D.78°4、甲、乙两地相距s千来,汽车从甲地匀速行驶到乙地,行驶的时间t(小时)关于行驶速度v(千米时)的函数图像是( )A. B.C. D.5、的相反数是( )A. B. C. D.36、下列一元二次方程有两个相等的实数根的是( )A. B. C. D. 7、若数a使关于x的方程=的解为非负数,使关于y的不等式组无解,则所有满足条件的整数a的值之和为( )A.7 B.12 C.14 D.188、如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=108°则∠BAE的度数为( )A.120° B.108° C.132° D.72°9、下列方程中,属于二元一次方程的是( )A.xy﹣3=1 B.4x﹣2y=3 C.x+=4 D.x2﹣4y=110、已知有理数在数轴上的位置如图所示,且,则代数式的值为( ).A. B.0 C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、多项式x3-4x2y3+26的次数是_______.2、如图,C是线段AB延长线上一点,D为线段BC上一点,且,E为线段AC上一点,,若,则_________.3、经过点M(3,1)且平行于x轴的直线可以表示为直线 ______.4、如图,已知中,,,,作AC的垂直平分线交AB于点、交AC于点,连接,得到第一条线段;作的垂直平分线交AB于点、交AC于点,连接,得到第二条线段;作的垂直平分线交AB于点、交于点,连接,得到第三条线段;……,如此作下去,则第n条线段的长为______.5、比较大小:-7______-8(填入>”或“<”号)..三、解答题(5小题,每小题10分,共计50分)1、如图1,点A、O、B依次在直线MN上,如图2,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,当其中一条射线回到起始位置时,运动停止,直线MN保持不动,设旋转时间为ts.(1)当t=3时,∠AOB= ;(2)在运动过程中,当射线OB与射线OA垂直时,求t的值;(3)在旋转过程中,是否存在这样的t,使得射线OB、射线OA和射线OM,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分?如果存在,直接写出答案;如果不存在,请说明理由.2、如图,已知二次函数y=ax2+bx+1的图象经过点A(﹣1,6)与B(4,1)两点.(1)求这个二次函数的表达式;(2)在图中画出该二次函数的图象;(3)结合图象,写出该函数的开口方向、对称轴和顶点坐标.3、已知,,OC平分∠AON.(1)如图1,射线与射线OB均在∠MON的内部.①若,∠MOA= °;②若,直接写出∠MOA的度数(用含的式子表示);(2)如图2,射线OA在∠MON的内部,射线OB在∠MON的外部.①若,求∠MOA的度数(用含的式子表示);②若在∠MOA的内部有一条射线OD,使得,直接写出∠MOD的度数.4、如图,在长方形中,,.延长到点,使,连接.动点从点出发,沿着以每秒1个单位的速度向终点运动,点运动的时间为秒.(1)的长为 ;(2)连接,求当为何值时,;(3)连接,求当为何值时,是直角三角形;(4)直接写出当为何值时,是等腰三角形.5、如图,点O和的三个顶点正好在正方形网格的格点上,按要求完成下列问题:(1)画出绕点O顺时针旋转后的;(2)画出绕点O旋转后的. -参考答案-一、单选题1、D【分析】解两个不等式,再根据“大大小小找不着”可得m的取值范围.【详解】解:解不等式得:,解不等式得:,∵不等式组无解,∴,解得:,故选:D.【点睛】此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则是解题关键.2、B【分析】设这队同学共有人,根据“如果每间房住4个人,那么有8个人无法入住,如果每间房住5个人,那么有一间房空了3个床位,”即可求解.【详解】解:设这队同学共有人,根据题意得: .故选:B【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.3、C【分析】根据五边形的内角和等于,由,可求的度数,再根据角平分线的定义可得与的角度和,进一步求得的度数.【详解】解:五边形的内角和等于,,,、的平分线在五边形内相交于点,,.故选:C.【点睛】本题主要考查了多边形的内角和公式,角平分线的定义,解题的关键是熟记公式,注意整体思想的运用.4、B【分析】直接根据题意得出函数关系式,进而得出函数图象.【详解】解:由题意可得:t=,是反比例函数,故只有选项B符合题意.故选:B.【点睛】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.5、D【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】解:的相反数是3,故选D.【点睛】本题考查了相反数的定义,只有符号不同的两个数是互为相反数,正数的相反数是负数,0的相反数是0,负数的相反数是正数.6、B【分析】根据一元二次方程根的判别式判断即可.【详解】解:、△,方程有两个不等实数根,不符合题意;、△,方程有两个相等实数根,符合题意;、△,方程有两个不相等实数根,不符合题意;、△,方程没有实数根,不符合题意;故选:B.【点睛】本题考查了一元二次方程根的判别式,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△方程有两个不相等的实数根;(2)△方程有两个相等的实数根;(3)△方程没有实数根.7、C【分析】第一步:先用a的代数式表示分式方程的解.再根据方程的解为非负数,x-3≠0,列不等式组,解出解集,第二步解出不等式组的解集,根据不等式组无解,列不等式求出解集,根据这两步中m的取值范围进行综合考虑确定最后m的取值范围,最后根据a为整数确定最后结果.【详解】解:,2a-8=x-3,x=2a-5,∵方程的解为非负数,x-3≠0,∴,解得a≥且a≠4,,解不等式组得:,∵不等式组无解,∴5-2a≥-7,解得a≤6,∴a的取值范围:≤a≤6且a≠4,∴满足条件的整数a的值为3、5、6,∴3+5+6=14,故选:C.【点睛】本题考查分式方程的解、解一元一次不等式组、解一元一次不等式,掌握用含a的式子表示方程的解,根据方程的解为非负数,根据不等式组无解,两个条件结合求出m的取值范围是解题关键.8、C【分析】根据等边三角形的性质可得,,然后利用SSS即可证出,从而可得,,,然后求出,即可求出的度数.【详解】解:△是等边三角形,,,在与中,,,,,,,故选C【点睛】此题考查的是等边三角形的性质和全等三角形的判定及性质,掌握等边三角形的性质、利用SSS判定两个三角形全等和全等三角形的对应角相等是解决此题的关键.9、B【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【详解】解:A、xy-3=1,是二元二次方程,故本选项不合题意;B、4x-2y=3,属于二元一次方程,故本选项符合题意;C、x+=4,是分式方程,故本选项不合题意;D、x2-4y=1,是二元二次方程,故本选项不合题意;故选:B.【点睛】此题主要考查了二元一次方程的定义,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.10、C【分析】首先根据数轴的信息判断出有理数的大小关系,然后确定各绝对值中代数式的符号,即可根据绝对值的性质化简求解.【详解】解:由图可知:,∴,,,,∴,故选:C.【点睛】本题考查数轴与有理数,以及化简绝对值,整式的加减运算等,理解数轴上表示的有理数的性质,掌握化简绝对值的方法以及整式的加减运算法则是解题关键.二、填空题1、5【分析】根据多项式次数的定义解答.【详解】解:多项式各项的次数分别为:3、5、0,故答案为:5.【点睛】此题考查了多项式次数的定义:多项式中次数最高项的次数是多项式的次数,熟记定义是解题的关键.2、3【分析】设BD=a,AE=b,则CD=2a,CE=2b,根据AB=AE+BE=AE+DE-BD代入计算即可.【详解】设BD=a,AE=b,∵,,∴CD=2a,CE=2b,∴DE=CE-CD=2b-2a=2即b-a=1,∴AB=AE+BE=AE+DE-BD=2+b-a=2+1=3,故答案为:3.【点睛】本题考查了线段的和与差,正确用线段的和差表示线段是解题的关键.3、y=1【分析】根据平行于x轴的直线上所有点纵坐标相等,又直线经过点M(3,1),则该直线上所有点的共同特点是纵坐标都是1.【详解】解:∵所求直线经过点M(3,1)且平行于x轴,∴该直线上所有点纵坐标都是1,故可以表示为直线y=1.故答案为:y=1.【点睛】此题考查与坐标轴平行的直线的特点:平行于x轴的直线上点的纵坐标相等,平行于y轴的直线上点的横坐标相等.4、或【分析】由题意依据垂直平分线性质和等边三角形性质以及60°直角三角形所对应的邻边是斜边的一半得出,,进而总结规律即可得出第n条线段的长.【详解】解:∵,,,∴,∵垂直平分AC,∴,∴,∴,同理,,可得第n条线段的长为:或.故答案为:或.【点睛】本题考查图形规律,熟练掌握垂直平分线性质和等边三角形性质以及60°直角三角形所对应的邻边是斜边的一半是解题的关键.5、【分析】根据两个负数比较大小,其绝对值大的反而小比较即可.【详解】解:,,,,故答案为:.【点睛】本题考查了绝对值和有理数的大小比较,解题的关键是能熟记有理数的大小比较法则的内容,注意:两个负数比较大小,其绝对值大的反而小.三、解答题1、(1)150°(2)9或27或45;(3)t为、、、、【分析】(1)求出∠AOM及∠BON的度数可得答案;(2)分两种情况:①当时,②当时,根据OA与OB重合前,OA与OB重合后,列方程求解; (3)射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分有以下九种情况:①OA分∠BOM为2:3时,②OA分∠BOM为3:2时,③OB分∠AOM为2:3时,④OB分∠AOM为3:2时,⑤OM分∠AOB为2:3时,⑥ OB分∠AOM为2:3时,⑦OB分∠AOM为3:2时,⑧ OA分∠BOM为3:2时,⑨ OA分∠BOM为2:3时,列方程求解并讨论是否符合题意.(1)解:当t=3时,∠AOM=12°,∠BON=18°,∴∠AOB=180°-∠AOM-∠BON=150°,故答案为:150°;(2)解:分两种情况:①当时,当OA与OB重合前,,得t=9; 当OA与OB重合后,,得t=27;②当时,当OA与OB重合前,,得t=45; 当OA与OB重合后,,得t=63(舍去);故t的值为9或27或45;(3)解:射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分有以下九种情况:①OA分∠BOM为2:3时,∴4t:(180-4t-6t)=2:3,解得:t=;②OA分∠BOM为3:2时,∴4t:(180-4t-6t)=3:2,解得:t=;③OB分∠AOM为2:3时,∵,∴,得t=;④OB分∠AOM为3:2时,∴,得t=;⑤OM分∠AOB为2:3时,∴,得t=54,此时>180°,故舍去;⑥ OB分∠AOM为2:3时,∴,得,此时,故舍去;⑦OB分∠AOM为3:2时,∴,得, 此时,故舍去;⑧ OA分∠BOM为3:2时,∴,得, ⑨ OA分∠BOM为2:3时,∴,得t=67.5(舍去)综上,当t的值分别为、、、、时,射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分.【点睛】此题考查了角的计算,角的旋转,几何图形中角度的度数比,列一元一次方程,正确画出图形求角度值是解题的关键.2、(1)(2)见解析(3)开口向上,对称轴为,顶点坐标为【分析】(1)根据待定系数法求二次函数解析式即可;(2)根据顶点,对称性描出点,进而画出该二次函数的图形即可;(3)根据函数图像直接写出开口方向、对称轴和顶点坐标.(1)将点A(﹣1,6)与B(4,1)代入y=ax2+bx+1即解得(2)由,确定顶点坐标以及对称轴,根据对称性求得描出点关于的对称点,作图如下,(3)根据图象可知,的图象开口向上,对称轴为,顶点坐标为【点睛】本题考查了待定系数法求解析式,画二次函数图象,的图象与性质,求得解析式是解题的关键.3、(1)①40;②;(2)①;②.【分析】(1)①先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;②先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;(2)①先根据角的和差可得,再根据角平分线的定义可得,然后根据即可得;②先根据角的和差可得,从而可得,再根据即可得.【详解】解:(1)①,,平分,,,,故答案为:40;②,,平分,,,;(2)①,,平分,,,;②如图,由(2)①已得:,,,,,.【点睛】本题考查了与角平分线有关的角度计算,熟练掌握角的运算是解题关键.4、(1)5;(2)秒时,;(3)当秒或秒时,是直角三角形;(4)当秒或秒或秒时,为等腰三角形.【分析】(1)根据长方形的性质及勾股定理直接求解即可;(2)根据全等三角形的性质可得:,即可求出时间t;(3)分两种情况讨论:①当时,在两个直角三角形中运用两次勾股定理,然后建立等量关系求解即可;②当时,此时点P与点C重合,得出,即可计算t的值;(4)分三种情况讨论:①当时,②当时,③当时,分别结合图形,利用各边之间的关系及勾股定理求解即可得.【详解】解:(1)∵四边形ABCD为长方形,∴,,在中,,故答案为:5;(2)如图所示:当点P到如图所示位置时,,∵,,∴,仅有如图所示一种情况,此时,,∴,∴秒时,;(3)①当时,如图所示:在中,,在中,,∴,,,∴,解得:;②当时,此时点P与点C重合,∴,∴;综上可得:当秒或秒时,是直角三角形;(4)若为等腰三角形,分三种情况讨论:①当时,如图所示:∵,,∴,∴,∴;②当时,如图所示:,∴;③当时,如图所示:,∴,在中,,即,解得:,,∴;综上可得:当秒或秒或秒时,为等腰三角形.【点睛】题目主要考查勾股定理解三角形,等腰三角形的性质,全等三角形的性质等,理解题意,分类讨论作出相应图形是解题关键.5、(1)见解析(2)见解析【分析】把各点连接至点O,再把每根连线旋转要求的度数即可得到旋转后的各个点,再连接这些点即可得到旋转后的图像.(1)把各点连接至点O,再把每根连线顺时针旋转90°即可得到旋转后的各个点,再连接这些点即可得到旋转后的(2)把各点连接至点O,再把每根连线顺时针旋转180°即可得到旋转后的各个点,再连接这些点即可得到旋转后的,由于顺时针旋转180°和逆时针旋转180°效果相同,故该题只存在一种可能:【点睛】本题考查图形的旋转的作图,掌握连接旋转中心和图片中的点是本题关键.
相关试卷
这是一份【真题汇总卷】2022年北京市平谷区中考数学备考模拟练习 (B)卷(精选),共20页。试卷主要包含了下列命题正确的是等内容,欢迎下载使用。
这是一份【历年真题】中考数学备考模拟练习 (B)卷(精选),共26页。
这是一份【难点解析】2022年北京市门头沟区中考数学备考真题模拟测评 卷(Ⅰ)(精选),共20页。试卷主要包含了二次函数y=,如图,点C,下列命题正确的是等内容,欢迎下载使用。