综合复习(4)-2020-2021学年苏科版七年级数学下册讲义(学生版+教师版)学案
展开
第四讲:总复习(4)
一、主要内容
1、不等式 2、一元一次不等式 3、一元一次不等式组
二、基本概念
1、不等式
1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.
要点诠释:
(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.
(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.
解集的表示方法一般有两种:一种是用最简的不等式表示,例如,等;另一种是用数轴表示,如下图所示:
(3)解不等式:求不等式的解集的过程叫做解不等式.
2. 不等式的性质:
不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.
用式子表示:如果a>b,那么a±c>b±c
不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.
用式子表示:如果a>b,c>0,那么ac>bc(或).
不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.
用式子表示:如果a>b,c<0,那么ac<bc(或).
1.用适当的符号语言表达下列关系.。
(1)a与5的和是正数. (2)b与-5的差不是正数.
(3)x的2倍大于x. (4)2x与1的和小于零.
(5)a的2倍与4的差不少于5.
举一反三:
【变式】用适当的符号语言表达下列关系:
(1)y的与3的差是负数.(2)x的与3的差大于2.
(3)b的与c的和不大于9.
2.用适当的符号填空:
(1)如果a<b,那么a-3__b-3; 7a__7b;-2a__-2b.
(2)如果a<b,那么a-b__0;a+5b__6b;.
举一反三:【变式1】用适当的符号填空:
(1)7a+6__7a-6;(2)若ac>bc,且c<0,则a b.
【变式2】判断
(1)如果,那么;(2)如果,那么.
2、一元一次不等式
1. 定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,
要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.
2.解法:
解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.
要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.
3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:
(1)审:认真审题,分清已知量、未知量;
(2)设:设出适当的未知数;
(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;
(4)列:根据题中的不等关系,列出不等式;
(5)解:解出所列的不等式的解集;
(6)答:检验是否符合题意,写出答案.
要点诠释:
列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键.
3. 解不等式
举一反三:【变式】解不等式,并把解集在数轴上表示出来.
4.某市居民用电的电价实行阶梯收费,收费标准如下表:
一户居民每月用电量x(单位:度) | 电费价格(单位:元/度) |
0<x≤200 | a |
200<x≤400 | b |
x>400 | 0.92 |
(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.
(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?
3、一元一次不等式组
关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.
要点诠释:
(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集.
(2)解不等式组:求不等式组解集的过程,叫做解不等式组.
(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.
(4)一元一次不等式组的应用: ①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.
5. 解不等式组: ,并求出正整数解。
举一反三:【变式】解不等式组:,并把解集在数轴上表示出来.
三、课堂讲解
1、甲、乙两班学生到集市上购买苹果,价格如下:
甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,而乙班则一次购买苹果70千克。
(1)乙班比甲班少付出多少元?(2)甲班第一次、第二次分别购买苹果多少千克?
2. 判断以下各题的结论是否正确(对的打“√”,错的打“×”).
(1)若 b﹣3a<0,则b<3a;
(2)如果﹣5x>20,那么x>﹣4;
(3)若a>b,则 ac2>bc2;
(4)若ac2>bc2,则a>b;
(5)若a>b,则 a(c2+1)>b(c2+1).
(6)若a>b>0,则<. .
3、己知:x<0.5,比较2-4x和18x-9的大小.
4、已知关于x的不等式的解集是,求a的取值范围.
5、如果关于x的不等式正整数解为1、2、3, 则正整数k应取怎样的值?
6、如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是 .
7、求不等式组的整数解.
8、若关于不等式组只有四个整数解,求a的取值范围.
9、某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台.三种家电的进价和售价如下表所示:
价格 种类 | 进价(元/台) | 售价(元/台) |
电视机 | 2000 | 2100 |
冰 箱 | 2400 | 2500 |
洗衣机 | 1600 | 1700 |
(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?
(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?
10、已知不等式组的解集为,试求m,n的值.
11、潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:
种植户 | 种植A类蔬菜面积(单位:亩) | 种植B类蔬菜面积(单位:亩) | 总收入(单位:元) |
甲 | 3 | 1 | 12500 |
乙 | 2 | 3 | 16500 |
说明:不同种植户种植的同类蔬菜每亩平均收入相等.
(1)求A、B两类蔬菜每亩平均收入各是多少元?
(2)某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.
【达标检测】
一、选择题
1. 不等式组的正整数解的个数是( ).
A.1个 B.2个 C.3个 D.4个
2. 以下各式中,一元一次不等式个数为( ).
①;②;③;④;⑤
A. 1 B. 2 C. 3 D. 0
3.不等式9-x>x+的正整数解的个数是( ).
A.1 B.2 C.3 D.无数个
4.三个连续自然数的和小于11,这样的自然数组共有( )组.
A.1 B.2 C.3 D.4
二、填空题
5.不等式组 的解集为 .
6.关于x的方程2x+3k=1的解是负数,则k的取值范围是_______.
7.若不等式(m-2)x>2的解集是x<,则m的取值范围是_______.
8.小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天至少要读x页,所列不等式为___________.
三、解答题
9.解下列不等式(组),并把不等式的解集表示在数轴上.
(1) (2)
10、某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.
(1)求甲、乙两种花木每株成本分别为多少元?
(2)据市场调研,1株甲种花木售价为760元, 1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?
2020-2021学年9.5 多项式的因式分解学案及答案: 这是一份2020-2021学年9.5 多项式的因式分解学案及答案,文件包含96因式分解-教师docx、96因式分解-学生docx等2份学案配套教学资源,其中学案共19页, 欢迎下载使用。
综合复习(2)-2020-2021学年苏科版七年级数学下册讲义(学生版+教师版)学案: 这是一份综合复习(2)-2020-2021学年苏科版七年级数学下册讲义(学生版+教师版)学案,文件包含苏教版7下数学总复习2-学生docx、苏教版7下数学总复习2-教师docx等2份学案配套教学资源,其中学案共14页, 欢迎下载使用。
综合复习(3)-2020-2021学年苏科版七年级数学下册讲义(学生版+教师版)学案: 这是一份综合复习(3)-2020-2021学年苏科版七年级数学下册讲义(学生版+教师版)学案,文件包含苏教版7下数学总复习3-学生docx、苏教版7下数学总复习3-教师docx等2份学案配套教学资源,其中学案共25页, 欢迎下载使用。