2020-2021学年3.1 两角和与差的正弦、余弦和正切公式教课内容ppt课件
展开3.1 两角和与差的正弦、余弦 和正切公式3.1.1 两角差的余弦公式问题提出1.在三角函数中,我们学习了哪些基本的三角函数公式? 2.对于30°,45°,60°等特殊角的三角函数值可以直接写出,利用诱导公式还可进一步求出150°,210°,315°等角的三角函数值.我们希望再引进一些公式,能够求更多的非特殊角的三角函数值,同时也为三角恒等变换提供理论依据.3.若已知α,β的三角函数值,那么cos(α-β)的值是否确定?它与α,β的三角函数值有什么关系?这是我们需要探索的问题. 两角差的余弦公式 探究(一):两角差的余弦公式 思考1:设α,β为两个任意角, 你能判断cos(α-β)=cosα-cosβ恒成立吗?cos(30°-30°)≠cos30°-cos30°思考2:我们设想cos(α-β)的值与α,β的三角函数值有一定关系,观察下表中的数据,你有什么发现?思考3:一般地,你猜想cos(α-β)等于什么?cos(α-β)=cosαcosβ+sinαsinβ思考4:如图,设α,β为锐角,且α>β,角α的终边与单位圆的交点为P1, ∠P1OP=β,那么cos(α-β)表示哪条线段长?cos(α-β)=OM思考5:如何用线段分别表示sinβ和cosβ?sinβcosβ思考6:cosαcosβ=OAcosα,它表示哪条线段长?sinαsinβ=PAsinα,它表示哪条线段长?sinαsinβcosαcosβ思考7:利用OM=OB+BM=OB+CP可得什么结论?cos(α-β)=cosαcosβ+sinαsinβxyPP1MBOAC+11思考8:上述推理能说明对任意角α,β,都有cos(α-β)=cosαcosβ+sinαsinβ成立吗?思考9:根据cosαcosβ+sinαsinβ的结构特征,你能联想到一个相关计算原理吗?α=2kπ+β+θ或β=2kπ+α+θ cos(α-β)=cosαcosβ+sinαsinβ探究(二):两角差的余弦公式的变通 思考1:若已知α+β和β的三角函数值,如何求cosα的值? cosα=cos[(α+β)-β]= cos(α+β) cosβ+sin(α+β)sinβ. 思考2:利用α-(α-β)=β可得cosβ等于什么?cosβ=cos[(α-β)-α]= cos(α-β)cosα+sin(α-β)sinα.思考3:若cosα+cosβ=a,sinα+sinβ=b,则cos(α-β)等于什么?思考4:若cosα-cosβ=a,sinα-sinβ=b,则cos(α-β)等于什么?例1 利用余弦公式求cos15°的值. 理论迁移小结作业1.在差角的余弦公式的形成过程中,蕴涵着丰富的数学思想、方法和技巧,如数形结合,化归转换、归纳、猜想、构造、换元、向量等,我们要深刻理解和领会.2.已知一个角的正弦(或余弦)值,求该角的余弦(或正弦)值时, 要注意该角所在的象限,从而确定该角的三角函数值符号.作业:P127练习:1,2,3,4.
高中人教版新课标A3.1 两角和与差的正弦、余弦和正切公式背景图课件ppt: 这是一份高中人教版新课标A3.1 两角和与差的正弦、余弦和正切公式背景图课件ppt
高中数学人教版新课标A必修43.1 两角和与差的正弦、余弦和正切公式复习课件ppt: 这是一份高中数学人教版新课标A必修43.1 两角和与差的正弦、余弦和正切公式复习课件ppt,共18页。PPT课件主要包含了答案B,答案C,考点二角的变换等内容,欢迎下载使用。
必修43.1 两角和与差的正弦、余弦和正切公式教课ppt课件: 这是一份必修43.1 两角和与差的正弦、余弦和正切公式教课ppt课件