中考数学《一轮专题讲义》(41专题)第34讲 四边形、平行四边形、梯形(解析版)学案
展开
这是一份中考数学《一轮专题讲义》(41专题)第34讲 四边形、平行四边形、梯形(解析版)学案,共21页。学案主要包含了四边形的内角和定理及外角和定理,平行四边形,关于平行四边形的综合探究问题,等腰梯形的性质与判定等内容,欢迎下载使用。
中考数学一轮复习讲义
考点三十四:四边形
聚焦考点☆温习理解
一、四边形的内角和定理及外角和定理
四边形的内角和定理:四边形的内角和等于360°。
四边形的外角和定理:四边形的外角和等于360°。
推论:多边形的内角和定理:n边形的内角和等于180°;
多边形的外角和定理:任意多边形的外角和等于360°。
二、平行四边形
1、平行四边形的概念
两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质
(1)平行四边形的邻角互补,对角相等。
(2)平行四边形的对边平行且相等。
推论:夹在两条平行线间的平行线段相等。
(3)平行四边形的对角线互相平分。
(4)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。
3、平行四边形的判定
(1)定义:两组对边分别平行的四边形是平行四边形
(2)定理1:两组对角分别相等的四边形是平行四边形
(3)定理2:两组对边分别相等的四边形是平行四边形
(4)定理3:对角线互相平分的四边形是平行四边形
(5)定理4:一组对边平行且相等的四边形是平行四边形
名师点睛☆典例分类
考点典例一、四边形的内角和及外角和
【例1】(2019•福建)已知正多边形的一个外角为36°,则该正多边形的边数为
A.12 B.10 C.8 D.6
【答案】B
【解析】360°÷36°=10,所以这个正多边形是正十边形.故选B.
【名师点睛】本题主要考查了多边形的外角和定理.是需要识记的内容.
【举一反三】
(2018年湖北省宜昌市中考模拟试题(一))一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是( )
A. 17 B. 16 C. 15 D. 16或15或17
【答案】D
则多边形的边数是15,16,17.
故选D.
考点典例二、平行四边形的性质与判定
【例2】(2019▪广西池河)如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( )
A.∠B=∠F B.∠B=∠BCF C.AC=CF D.AD=CF
【答案】B.
【解析】利用三角形中位线定理得到DEAC,结合平行四边形的判定定理进行选择.
∵在△ABC中,D,E分别是AB,BC的中点,
∴DE是△ABC的中位线,
∴DEAC.
A.根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.
B.根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.
C.根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.
D.根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.
【举一反三】
在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于__________.
【来源】山东省淄博市2018年中考数学试题
【答案】10
【解析】分析:要计算周长首先需要证明E、C、D共线,DE可求,问题得解.
详解:∵四边形ABCD是平行四边形
∴AD∥BC,CD=AB=2
由折叠,∠DAC=∠EAC
∵∠DAC=∠ACB
∴∠ACB=∠EAC
∴OA=OC
∵AE过BC的中点O
∴AO=BC
∴∠BAC=90°
∴∠ACE=90°
由折叠,∠ACD=90°
∴E、C、D共线,则DE=4
∴△ADE的周长为:3+3+2+2=10
故答案为:10
点睛:本题考查了平行四边形的性质、轴对称图形性质和三点共线的证明.解题时注意不能忽略E、C、D三点共线.
考点典例三、关于平行四边形的综合探究问题
【例题3】(2018四川省眉山市15分 ) 如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.
(1)求证:BN平分∠ABE;
(2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;
(3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.
【答案】(1)证明:∵AB=AC,
∴∠ABC=∠ACB,
又∵M为BC中点,
∴AM⊥BC,
在Rt△ABM中,
∴∠ABC+∠MAB=90°,
∵AC⊥BD,
在Rt△CBE中,
∴∠ACB+∠EBC=90°,
∴∠MAB=∠EBC,
又∵MB=MN,AM⊥BC,
∴△NBM为等腰直角三角形,
∴∠MBN=∠MNB=45°,
∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,
∵∠MAB=∠EBC,
∴∠NBE=∠ABN,
∴BN平分∠ABE.
(2)解:∵四边形DNBC为平行四边形,
设BM=CM=MN=a,则DN=BC=2a,
在△ABN和△DBN中,
∵
∴△ABN≌△DBN中(SAS),
∴AN=DN=2a,
在Rt△ABM中,
∵BD=1,AB=AC=BD,
∴AB=1,
∴AM2+BM2=AB2 ,
∴(2a+a)2+a2=1,
解得:a= .
∴BC=2a= .
(3)解证明:∵MB=MN,M为BC中点,
∴MN=MB= BC,
又∵F是AB的中点,AB=AC=BD,
在Rt△ABM中,
∴MF=AF=BF= AB= BD,
∴∠MAB=∠FMN,
由(1)知∠MAB=∠EBC,
∴∠FMN=∠EBC,
又∵ ,
∴△MFN∽△BDC.
考点典例四、等腰梯形的性质与判定
如图,等腰梯形ABCD的周长为16,BC=4,CD=3,则AB= .
【答案】5.
【点睛】本题考查了等腰梯形的性质,是基础知识要熟练掌握.
【举一反三】
如图,等腰梯形ABCD中,对角线AC、DB相交于点P,∠BAC=∠CDB=90°,AB=AD=DC.则cos∠DPC的值是( )
A. B. C. D.
【答案】A.
【解析】
试题分析:∵梯形ABCD是等腰梯形,
∴∠DAB+∠BAC=180°,AD∥BC,[来源:学科网ZXXK]
∴∠DAP=∠ACB,∠ADB=∠ABD,
∵AB=AD=DC,
∴∠ABD=∠ADB,∠DAP=∠ACD,
∴∠DAP=∠ABD=∠DBC,
∵∠BAC=∠CDB=90°,
∴3∠ABD=90°,
∴∠ABD=30°,
在△ABP中,
∵∠ABD=30°,∠BAC=90°,
∴∠APB=60°,
∴∠DPC=60°,
∴cos∠DPC=cos60°=.
故选A.
课时作业☆能力提升
一.选择题
1.在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是( )
A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 不能确定
【来源】四川省宜宾市2018年中考数学试题
【答案】B
【解析】分析:充分利用角平分线的性质证明∠E=90°即可判断.
详解:如图,
点睛:本题考查的是直角三角形的判定,熟记有一个角是90°的三角形是直角三角形是解题的关键.
2. (浙江省宁波市四校2018届九年级上学期12月联考数学试卷)如图所示把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的正三角形,那么剪出的正三角形全部展开铺平后得到的平面图形一定是( )
A. 正三角形 B. 正方形 C. 正五边形 D. 正六边形
【答案】D
【解析】由第二个图形可知:∠AOB被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.
故选:D.
3. (2018•宁波)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为( )
A.50° B.40° C.30° D.20°
【答案】B
【解答】解:∵∠ABC=60°,∠BAC=80°,
∴∠BCA=180°﹣60°﹣80°=40°,
∵对角线AC与BD相交于点O,E是边CD的中点,
∴EO是△DBC的中位线,
∴EO∥BC,
∴∠1=∠ACB=40°.故选:B.
4. (2018年河南省驻马店市实验中学第一次中考模拟数学试题)如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF∶S△AOB的值为( )
A. 1∶3 B. 1∶5 C. 1∶6 D. 1∶11
【答案】C
5. (2018·浙江省台州·4分)如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是( )
A. B.1 C. D.
【答案】B
【解答】解:∵由题意可知CF是∠BCD的平分线,
∴∠BCE=∠DCE.
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠DCE=∠E,∠BCE=∠AEC,
∴BE=BC=3,
∵AB=2,
∴AE=BE﹣AB=1,
故选:B.
6. (2018年湖北省宜昌市夷陵区东湖初级中学数学中考模拟试题(一))如图在梯形ABCD中,AD∥BC,AD⊥CD,BC=CD=2AD,E是CD上一点,∠ABE=45°,则tan∠AEB的值等于( )
A. 3 B. 2 C. D.
【答案】A
则
故选A.
7. (浙江省宁波市四校2018届九年级上学期12月联考数学试卷)如图所示把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的正三角形,那么剪出的正三角形全部展开铺平后得到的平面图形一定是( )
A. 正三角形 B. 正方形 C. 正五边形 D. 正六边形
【答案】D
【解析】由第二个图形可知:∠AOB被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.
故选:D.
8. (2018•株洲市•3分)如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=_____.
【答案】6
【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=3,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=AM=6.
详解:∵BD=CD,AB=CD,
∴BD=BA,
又∵AM⊥BD,DN⊥AB,
∴DN=AM=3,
又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,
∴∠P=∠PAM,
∴△APM是等腰直角三角形,
∴AP=AM=6,
故答案为:6.
9. (2018年河南省驻马店市实验中学第一次中考模拟数学试题)如图,在矩形ABCD中,AB=8,AD=10,点E是CD的中点,将这张纸片依次折叠两次:第一次折叠纸片使点A与点E重合,如图②,折痕为MN,连接ME,NE;第二次折叠纸片使点N与点E重合,如图③,点B落到B′处,折痕为HG,连接HE,则下列结论:①ME∥HG;②△MEH是等边三角形;③∠EHG=∠AMN;④tan∠EHG=.其中正确的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】C
如图2,作NF⊥CD于F.设DM=x,则AM=EM=10﹣x.∵点E是CD的中点,AB=CD=,∴DE=CD=.在Rt△DEM中,∵DM2+DE2=EM2,∴()2+x2=(10﹣x)2,解得x=2.6,∴DM=2.6,AM=EM=7.4.∵∠DEM+∠NEF=90°,∠NEF+∠ENF=90°,∴∠DEM=∠ENF.∵∠D=∠EFN=90°,∴△DME∽△FEN,∴,即,∴EN=,∴AN=,∴tan∠AMN==,∴tan∠EHG=,故④正确;
又∵tan60°=>,∴∠AMN≠60°,即∠EMH≠60°,∴△MEH不是等边三角形,故②错误,∴正确的结论有3个.故选C.
二.填空题
10. 一个多边形的内角和是其外角和的3倍,则这个多边形的边数是________.
【来源】江苏省宿迁市2018年中考数学试卷
【答案】8
【解析】【分析】根据多边形的内角和公式,多边形外角和为360°,根据题意列出方程,解之即可.
【详解】设这个多边形边数为n,
∴(n-2)×180°=360°×3,
∴n=8,
故答案为:8.
【点睛】本题考查了多边形的内角和与外角和,熟练掌握多边形的内角和公式、外角和为360度是解题的关键.
11.如图,若该图案是由8个全等的等腰梯形拼成的,则图中的__________º.
【答案】67.5.
【解析】
试题分析:∵正八边形的每个内角为,且该图案由8个全等的等腰梯形拼成,
∴.
考点:1.多边形内角和定理;2. 等腰梯形的性质.
12. 在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于__________.
【来源】山东省淄博市2018年中考数学试题
【答案】10
【解析】分析:要计算周长首先需要证明E、C、D共线,DE可求,问题得解.
详解:∵四边形ABCD是平行四边形
∴AD∥BC,CD=AB=2
由折叠,∠DAC=∠EAC
∵∠DAC=∠ACB
∴∠ACB=∠EAC
∴OA=OC
∵AE过BC的中点O
∴AO=BC
∴∠BAC=90°
∴∠ACE=90°
由折叠,∠ACD=90°
∴E、C、D共线,则DE=4
∴△ADE的周长为:3+3+2+2=10
故答案为:10
点睛:本题考查了平行四边形的性质、轴对称图形性质和三点共线的证明.解题时注意不能忽略E、C、D三点共线.
13. (2018•无锡)如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是 .
【答案】2≤a+2b≤5.
【解答】解:过P作PH⊥OY交于点H,
∵PD∥OY,PE∥OX,
∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,
∴EP=OD=a,
Rt△HEP中,∠EPH=30°,
∴EH=EP=a,
∴a+2b=2(a+b)=2(EH+EO)=2OH,
当P在AC边上时,H与C重合,此时OH的最小值=OC=OA=1,即a+2b的最小值是2;
当P在点B时,OH的最大值是:1+=,即(a+2b)的最大值是5,
∴2≤a+2b≤5.
14. (2018•株洲市•3分)如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=_____.
【答案】6
【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=3,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=AM=6.
详解:∵BD=CD,AB=CD,
∴BD=BA,
又∵AM⊥BD,DN⊥AB,
∴DN=AM=3,
又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,
∴∠P=∠PAM,
∴△APM是等腰直角三角形,
∴AP=AM=6,
故答案为:6.
三、解答题
15. 正方形ABCD的边长是5,点M是直线AD上一点,连接BM,将线段BM绕点M逆时针旋转90°得到线段ME,在直线AB上取点F,使AF=AM,且点F与点E在AD同侧,连接EF,DF.
(1)如图1,当点M在DA延长线上时,求证:△ADF≌△ABM;
(2)如图2,当点M在线段AD上时,求证:四边形DFEM是平行四边形;
(3)在(2)的条件下,线段AM与线段AD有什么数量关系时,四边形EFDM的面积最大?并求出这个面积的最大值.
图1 图2
【解析】:(1)证明:∵四边形ABCD是正方形,
∴∠DAF=∠BAM=90°,AD=AB.
在△ADF和△ABM中,
∴△ADF≌△ABM(SAS).
(2)证明:延长BM交DF于K.
∵△ADF≌△ABM,
∴DF=BM,∠ABM=∠ADF.
∵EM=BM,∴EM=DF.
∵∠ABM+∠AMB=90°,∠AMB=∠DMK,
∴∠ADF+∠DMK=90°.∴∠BKD=90°.
∵∠EMB=90°,∴∠EMB=∠BKF=90°.
∴EM∥DF.
∴四边形EFDM是平行四边形.
(3)设DM=x,则AM=AF=5-x,
S▱EFDM=DM·AF=x(5-x)=-(x-)2+.
∵-1<0,
∴x=时,▱EFDM的面积最大,最大面积为,
即当AM=AD时,▱EFDM的面积最大,最大面积为.
16. (吉林省长春市2018-7-2018学年度下学期名校调研系列卷——九年级数学综合测试(市命题))如图,在长方形中, 是边上一动点,连接,过点作的垂线,垂足为,交于点,交于点.
(1)当=,且是的中点时,求证: =.
(2)在(1)的条件下,求的值;
(3)类比探究:若=3, =2,则= .
【答案】(1)详见解析;(2).
∴∠ABF=∠DAG,所以AB=DA,所以△ABP△DAG,
∴AG=BP.
(2)由(1)AP=DG,AP=AD,DG=AD, ∴AB , ∴△DGE△BAE,∴.
(3)设AD=1,AB=3,DG=类比(2)可得∴△DGE△BAE,所以.
故答案为.
点睛:本题利用题目中的原理迁移解决问题,通过改变条件,要抓住哪些条件变与哪些原理不变的核心,解题利用了相似的性质,矩形的性质,从而得到结果.
17. 如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
(1)求证:四边形ACDF是平行四边形;
(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
【来源】江苏省连云港市2018年中考数学试题
【答案】(1)证明见解析;(2)BC=2CD,理由见解析.
【解析】分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;
(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.
详解:(1)∵四边形ABCD是矩形,
∴AB∥CD,
∴∠FAE=∠CDE,
∵E是AD的中点,
∴AE=DE,
又∵∠FEA=∠CED,
∴△FAE≌△CDE,
∴CD=FA,
又∵CD∥AF,
∴四边形ACDF是平行四边形;
点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
18. (2018四川省眉山市15分 ) 如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.
(1)求证:BN平分∠ABE;
(2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;
(3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.
【答案】(1)证明:∵AB=AC,
∴∠ABC=∠ACB,
又∵M为BC中点,
∴AM⊥BC,
在Rt△ABM中,
∴∠ABC+∠MAB=90°,
∵AC⊥BD,
在Rt△CBE中,
∴∠ACB+∠EBC=90°,
∴∠MAB=∠EBC,
又∵MB=MN,AM⊥BC,
∴△NBM为等腰直角三角形,
∴∠MBN=∠MNB=45°,
∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,
∵∠MAB=∠EBC,
∴∠NBE=∠ABN,
∴BN平分∠ABE.
(2)解:∵四边形DNBC为平行四边形,
设BM=CM=MN=a,则DN=BC=2a,
在△ABN和△DBN中,
∵
∴△ABN≌△DBN中(SAS),
∴AN=DN=2a,
在Rt△ABM中,
∵BD=1,AB=AC=BD,
∴AB=1,
∴AM2+BM2=AB2 ,
∴(2a+a)2+a2=1,
解得:a= .
∴BC=2a= .
(3)解证明:∵MB=MN,M为BC中点,
∴MN=MB= BC,
又∵F是AB的中点,AB=AC=BD,
在Rt△ABM中,
∴MF=AF=BF= AB= BD,
∴∠MAB=∠FMN,
由(1)知∠MAB=∠EBC,
∴∠FMN=∠EBC,
又∵ ,
∴△MFN∽△BDC.
相关学案
这是一份中考数学《一轮专题讲义》(41专题)第02讲 实数的计算(解析版)学案,共13页。学案主要包含了实数的运算,非负数的性质,实数的大小比较等内容,欢迎下载使用。
这是一份中考数学《一轮专题讲义》(41专题)第12讲 位置与坐标(解析版)学案,共21页。学案主要包含了三象限夹角平分线上x与y相等,图形的坐标变化与对称,点的平移,点的坐标规律等内容,欢迎下载使用。
这是一份中考数学《一轮专题讲义》(41专题)第23讲 视图与投影(解析版)学案,共14页。学案主要包含了辨别立体图形的三种视图,利用三视图求几何体的面积,由三视图确定物体的形状,由视图确定立方体的个数,利用三视图求几何体的体积等内容,欢迎下载使用。