所属成套资源:2021-2022学年人教版数学九年级下册期末复习专题训练
- 专题03 : 27.1 图形的相似 - 期末复习专题训练 2021-2022学年人教版数学九年级下册 试卷 0 次下载
- 专题10 : 27.3 位似- 期末复习专题训练 2021-2022学年人教版数学九年级下册 试卷 0 次下载
- 专题05:28. 2 解直角三角形及其应用 -期末考复习专题训练 2021-2022学年人教版数学九年级下册 试卷 0 次下载
- 专题07 26.2 实际问题与反比例函数 - 期末复习专题训练 专题06 2021-2022学年人教版数学九年级下册 试卷 0 次下载
- 专题02 : 27.1 图形的相似 - 期末复习专题训练 2021-2022学年人教版数学九年级下册 试卷 0 次下载
专题02 : 23.1 图形的旋转 - 期末复习专题训练 2021-2022学年人教版九年级数学上册
展开
这是一份专题02 : 23.1 图形的旋转 - 期末复习专题训练 2021-2022学年人教版九年级数学上册,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
专题02 :2021年人教新版九年级(上册)23.1 图形的旋转 - 期末复习专题训练
一、选择题(共10小题)
1.如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为( )
A. B.
C. D.
2.下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2019个图案中箭头的指向是( )
A.上方 B.右方 C.下方 D.左方
3.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是( )
A.10° B.20° C.50° D.70°
4.如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是( )
A.(﹣4,1) B.(﹣1,2) C.(4,﹣1) D.(1,﹣2)
5.下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是( )
A. 等边三角形 B. 平行四边形
C. 正八边形 D. 圆及其一条弦
6.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为( )
A.(1,﹣1) B.(﹣1,﹣1) C.(,0) D.(0,﹣)
7.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:
①AC=AD;②BD⊥AC;③四边形ACED是菱形.
其中正确的个数是( )
A.0 B.1 C.2 D.3
8.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是( )
A.50° B.70° C.110° D.120°
9.如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(﹣1,0),AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是( )
A.(2,2) B.(1,2) C.(﹣1,2) D.(2,﹣1)
10.如图,Rt△OCB的斜边在y轴上,OC=,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B',则B点的对应点B′的坐标是
( )
A.(,﹣1) B.(1,﹣) C.(2,0) D.(,0)
二、填空题(共5小题)
11.如图,在正方形网格中,格点△ABC绕某点顺时针旋转角α(0<α<180°)得到格点△A1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点,则α= 度.
12.如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上任意一点P的坐标为(x,y),那么点P在△A′B′C′中的对应点P′的坐标为 .
13.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= .
14.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为 .
15.△ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是 .
三、解答题(共5小题)
16.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.
(1)当点E恰好在AC上时,如图1,求∠ADE的大小;
(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.
17.如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).
(1)求证:四边形EHFG是平行四边形;
(2)若∠α=90°,AB=9,AD=3,求AE的长.
18.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°.
(1)如图1,连接BE,CD,BE的延长线交AC于点F,交CD于点P,求证:BP⊥CD;
(2)如图2,把△ADE绕点A顺时针旋转,当点D落在AB上时,连接BE,CD,CD的延长线交BE于点P,若BC=6,AD=3,求△PDE的面积.
19.我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.
图形的变化
示例图形
与对应线段有关的结论
与对应点有关的结论
平移
(1)
AA′=BB′
AA′∥BB′
轴对称
(2)
(3)
旋转
AB=A′B′;对应线段AB和A′B′所在的直线相交所成的角与旋转角相等或互补.
(4)
20.将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.
(1)如图,当点E在BD上时.求证:FD=CD;
(2)当α为何值时,GC=GB?画出图形,并说明理由.
专题02 :2021年人教新版九年级(上册)23.1 图形的旋转 - 期末复习专题训练
参考答案与试题解析
一、选择题(共10小题)
1.如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为( )
A. B.
C. D.
【解答】解:由旋转的性质得,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为A,
故选:A.
2.下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2019个图案中箭头的指向是( )
A.上方 B.右方 C.下方 D.左方
【解答】解:如图所示:每次旋转4个图形为一个周期,2019÷4=504…3,
则第2019个图案中箭头的指向与第3个图案方向一致,箭头的指向是下方.
故选:C.
3.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是( )
A.10° B.20° C.50° D.70°
【解答】解:如图.
∵∠AOC=∠2=50°时,OA∥b,
∴要使木条a与b平行,木条a旋转的度数至少是70°﹣50°=20°.
故选:B.
4.如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是( )
A.(﹣4,1) B.(﹣1,2) C.(4,﹣1) D.(1,﹣2)
【解答】解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),
故选:D.
5.下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是( )
A. 等边三角形 B. 平行四边形
C. 正八边形 D. 圆及其一条弦
【解答】解:A、最小旋转角度==120°;
B、最小旋转角度==180°;
C、最小旋转角度==45°;
D、不是旋转对称图形;
综上可得:旋转一定角度后,能与原图形完全重合,且旋转角度最小的是C.
故选:C.
6.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为( )
A.(1,﹣1) B.(﹣1,﹣1) C.(,0) D.(0,﹣)
【解答】解:菱形OABC的顶点O(0,0),B(2,2),得
D点坐标为(1,1).
每秒旋转45°,则第60秒时,得
45°×60=2700°,
2700°÷360=7.5周,
OD旋转了7周半,菱形的对角线交点D的坐标为(﹣1,﹣1),
故选:B.
7.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:
①AC=AD;②BD⊥AC;③四边形ACED是菱形.
其中正确的个数是( )
A.0 B.1 C.2 D.3
【解答】解:∵将等边△ABC绕点C顺时针旋转120°得到△EDC,
∴∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,
∴∠ACD=120°﹣60°=60°,
∴△ACD是等边三角形,
∴AC=AD,AC=AD=DE=CE,
∴四边形ACED是菱形,
∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,
∴AB=BC=CD=AD,
∴四边形ABCD是菱形,
∴BD⊥AC,∴①②③都正确,
故选:D.
8.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是( )
A.50° B.70° C.110° D.120°
【解答】解:∵∠ACB=90°,∠ABC=40°,
∴∠CAB=90°﹣∠ABC=90°﹣40°=50°,
∵将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,
∴∠A′BA=∠ABC=40°,A′B=AB,
∴∠BAA′=∠BA′A=×(180°﹣40°)=70°,
∴∠CAA'=∠CAB+∠BAA′=50°+70°=120°.
故选:D.
9.如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(﹣1,0),AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是( )
A.(2,2) B.(1,2) C.(﹣1,2) D.(2,﹣1)
【解答】解:∵点C的坐标为(﹣1,0),AC=2,
∴点A的坐标为(﹣3,0),
如图所示,将Rt△ABC先绕点C顺时针旋转90°,
则点A′的坐标为(﹣1,2),
再向右平移3个单位长度,则变换后点A′的对应点坐标为(2,2),
故选:A.
10.如图,Rt△OCB的斜边在y轴上,OC=,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B',则B点的对应点B′的坐标是
( )
A.(,﹣1) B.(1,﹣) C.(2,0) D.(,0)
【解答】解:如图,
在Rt△OCB中,∵∠BOC=30°,
∴BC=OC=×=1,
∵Rt△OCB绕原点顺时针旋转120°后得到△OC′B',
∴OC′=OC=,B′C′=BC=1,∠B′C′O=∠BCO=90°,
∴点B′的坐标为(,﹣1).
故选:A.
二、填空题(共5小题)
11.如图,在正方形网格中,格点△ABC绕某点顺时针旋转角α(0<α<180°)得到格点△A1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点,则α= 90 度.
【解答】解:如图,
连接CC1,AA1,作CC1,AA1的垂直平分线交于点E,连接AE,A1E
∵CC1,AA1的垂直平分线交于点E,
∴点E是旋转中心,
∵∠AEA1=90°
∴旋转角α=90°
故答案为:90
12.如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上任意一点P的坐标为(x,y),那么点P在△A′B′C′中的对应点P′的坐标为 (﹣x,y+2) .
【解答】解:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,
∴点P(x,y)的对应点P′的坐标为(﹣x,y+2).
故答案为(﹣x,y+2).
13.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ﹣1 .
【解答】解:如图,连接BB′,
∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,
∴AB=AB′,∠BAB′=60°,
∴△ABB′是等边三角形,
∴AB=BB′,
在△ABC′和△B′BC′中,
,
∴△ABC′≌△B′BC′(SSS),
∴∠ABC′=∠B′BC′,
延长BC′交AB′于D,
则BD⊥AB′,
∵∠C=90°,AC=BC=,
∴AB==2,
∴BD=2×=,
C′D=×2=1,
∴BC′=BD﹣C′D=﹣1.
故答案为:﹣1.
14.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为 (1,﹣1) .
【解答】解:连接AA′、CC′,
作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,
直线MN和直线EF的交点为P,点P就是旋转中心.
∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,
∴,
∴直线CC′为y=x+,
∵直线EF⊥CC′,经过CC′中点(,),
∴直线EF为y=﹣3x+2,
由得,
∴P(1,﹣1).
(本题可以用图象法,直接得出P坐标).
故答案为(1,﹣1).
15.△ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是 120° .
【解答】解:若△ABC以O为旋转中心,旋转后能与原来的图形重合,
根据旋转变化的性质,可得△ABC旋转的最小角度为360°÷3=120°.
故答案为:120°.
三、解答题(共5小题)
16.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.
(1)当点E恰好在AC上时,如图1,求∠ADE的大小;
(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.
【解答】(1)解:连接AD,如图1,
∵△ABC绕点C顺时针旋转α得到△DEC,点E恰好在AC上,
∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,
∵CA=CD,
∴∠CAD=∠CDA=(180°﹣30°)=75°,
∴∠ADE=90°﹣75°=15°;
(2)证明:如图2,
∵点F是边AC中点,
∴BF=AC,
∵∠ACB=30°,
∴AB=AC,
∴BF=AB,
∵△ABC绕点C顺时针旋转60°得到△DEC,
∴∠BCE=∠ACD=60°,CB=CE,DE=AB,
∴DE=BF,△ACD和△BCE为等边三角形,
∴BE=CB,
∵点F为△ACD的边AC的中点,
∴DF⊥AC,
易证得△CFD≌△ABC,
∴DF=BC,
∴DF=BE,
而BF=DE,
∴四边形BEDF是平行四边形.
17.如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).
(1)求证:四边形EHFG是平行四边形;
(2)若∠α=90°,AB=9,AD=3,求AE的长.
【解答】证明:(1)∵对角线AC的中点为O
∴AO=CO,且AG=CH
∴GO=HO
∵四边形ABCD是矩形
∴AD=BC,CD=AB,CD∥AB
∴∠DCA=∠CAB,且CO=AO,∠FOC=∠EOA
∴△COF≌△AOE(ASA)
∴FO=EO,且GO=HO
∴四边形EHFG是平行四边形;
(2)如图,连接CE
∵∠α=90°,
∴EF⊥AC,且AO=CO
∴EF是AC的垂直平分线,
∴AE=CE,
在Rt△BCE中,CE2=BC2+BE2,
∴AE2=(9﹣AE)2+9,
∴AE=5
18.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°.
(1)如图1,连接BE,CD,BE的延长线交AC于点F,交CD于点P,求证:BP⊥CD;
(2)如图2,把△ADE绕点A顺时针旋转,当点D落在AB上时,连接BE,CD,CD的延长线交BE于点P,若BC=6,AD=3,求△PDE的面积.
【解答】解:(1)∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°.
∴AD=AE,AB=AC,∠BAC﹣∠EAF=∠EAD﹣∠EAF,
即∠BAE=∠DAC,
在△ABE与△ADC中,,
∴△ABE≌△ADC(SAS),
∴∠ABE=∠ACD,
∵∠ABE+∠AFB=∠ACD+∠CFP=90°,
∴∠CPF=90°,
∴BP⊥CD;
(2)在△ABE与△ACD中,,
∴△ABE≌△ACD(SAS),
∴∠ABE=∠ACD,BE=CD,
∵∠PDB=∠ADC,
∴∠BPD=∠CAB=90°,
∴∠EPD=90°,BC=6,AD=3,
∴DE=3,AB=6,
∴BD=6﹣3=3,CD==3,
∵△BDP∽△CDA,
∴==,
∴==,
∴PD=,PB=
∴PE=3﹣=,
∴△PDE的面积=××=.
19.我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.
图形的变化
示例图形
与对应线段有关的结论
与对应点有关的结论
平移
(1) AB=A′B′,AB∥A′B′
AA′=BB′
AA′∥BB′
轴对称
(2) AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.
(3) l垂直平分AA′
旋转
AB=A′B′;对应线段AB和A′B′所在的直线相交所成的角与旋转角相等或互补.
(4) OA=OA′,∠AOA′=∠BOB′
【解答】解:(1)平移的性质:平移前后的对应线段相等且平行.所以与对应线段有关的结论为:AB=A′B′,AB∥A′B′;
(2)轴对称的性质:AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.
(3)轴对称的性质:轴对称图形对称轴是任何一对对应点所连线段的垂直平分线.所以与对应点有关的结论为:l垂直平分AA′.
(4)OA=OA′,∠AOA′=∠BOB′.
故答案为:(1)AB=A′B′,AB∥A′B′;(2)AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.;(3)l垂直平分AA′;(4)OA=OA′,∠AOA′=∠BOB′.
20.将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.
(1)如图,当点E在BD上时.求证:FD=CD;
(2)当α为何值时,GC=GB?画出图形,并说明理由.
【解答】解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,
∴∠AEB=∠ABE,
又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,
∴∠EDA=∠DEF,
又∵DE=ED,
∴△AED≌△FDE(SAS),
∴DF=AE,
又∵AE=AB=CD,
∴CD=DF;
(2)如图,当GB=GC时,点G在BC的垂直平分线上,
分两种情况讨论:
①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,
∵GC=GB,
∴GH⊥BC,
∴四边形ABHM是矩形,
∴AM=BH=AD=AG,
∴GM垂直平分AD,
∴GD=GA=DA,
∴△ADG是等边三角形,
∴∠DAG=60°,
∴旋转角α=60°;
②当点G在AD左侧时,同理可得△ADG是等边三角形,
∴∠DAG=60°,
∴旋转角α=360°﹣60°=300°.
相关试卷
这是一份专题23.1 图形的旋转(专项训练)-2022-2023学年九年级数学上册《 考点解读•专题训练》(人教版),共21页。
这是一份专题23.1 图形的旋转(知识解读)-2022-2023学年九年级数学上册《 考点解读•专题训练》(人教版),共28页。
这是一份专题03 : 23.1 图形的旋转 - 期末复习专题训练 2021-2022学年人教版九年级数学上册,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。