![第4套人教初中数学七下 7.1 平面直角坐标系教案01](http://m.enxinlong.com/img-preview/2/3/12424439/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第4套人教初中数学七下 7.1 平面直角坐标系教案02](http://m.enxinlong.com/img-preview/2/3/12424439/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第4套人教初中数学七下 7.1 平面直角坐标系教案03](http://m.enxinlong.com/img-preview/2/3/12424439/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学人教版七年级下册7.1.2平面直角坐标系教案设计
展开平面直角坐标系
教学目标:1、认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位
渗透对应关系,提高学生的数感.
重点:平面直角坐标系和点的坐标.
难点:正确画坐标和找对应点.
一.利用已有知识,引入
1.如图,怎样说明数轴上点A和点B的位置,
2.根据下图,你能正确说出各个象棋子的位置吗?
(我们已经知道,平面内点的位置的确定需要两个数,而借用一条数轴只能确定直线上点的位置,那么平面内的点我们借用几条数轴来确定它们的位置呢?)
二.明确概念
(问题:1.什么是平面直角坐标系?
2.在平面直角坐标系中,什么是横轴、纵轴、原点?
3.在坐标平面内如何求一个点的坐标?)
讨论结果:
平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴为y轴或纵轴,正方向;两个坐标轴的交点为平面直角坐标系的原点。
点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值。
例1写出图中A、B、C、D点的坐标。
建立平面直角坐标系后,平面被坐标轴分成四部分,
分别叫第一象限,第二象限,第三象限和第四象限。
你能说出例1中各点在第几象限吗?
例2在平面直角坐标系中描出下列各点。
A(3,4);B(-1,2);C(-3,-2);D(2,-2)
问题1:各象限点的坐标有什么特征?练习:教材43页:练习1,2。
三.深入探索
识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。
四、巩固练习:教材44页习题6.1——第1题;教材45页——第2,4,5,6。
五、课堂小结
1.平面直角坐标系;2.点的坐标及其表示;3.各象限内点的坐标的特征;4.坐标的简单应用
六、作业布置:课本P45第3题
7.2.1用坐标表示地理位置
教学目标:1.了解用平面直角坐标系来表示地理位置的意义及主要过程;培养学生解决实际问题的能力.
2.通过学习如何用坐标表示地理位置,发展学生的空间观念.
3.通过学习,学生能够用坐标系来描述地理位置.
4.通过用坐标系表示实际生活中的一些地理位置,培养学生的认真、严谨的做事态度.
重点:利用坐标表示地理位置.
难点:建立适当的直角坐标系,利用平面直角坐标系解决实际问题.
教学过程
一、创设问题情境
观察:教材第49页图6.2-1.
今天我们学习如何用坐标系表示地理位置,首先我们来探究以下问题.
二、师生互动,探究用坐标表示地理位置的方法
活动1:
根据以下条件画一幅示意图,指出学校和小刚家、小强家、小敏家的位置.
小刚家:出校门向东走150米,再向北走200米.
小强家:出校门向西走200米,再向北走350米,最后再向东走50米.
小敏家:出校门向南走100米,再向东走300米,最后向南走75米.
问题:如何建立平面直角坐标系呢?以何参照点为原点?如何确定x轴、y轴?如何选比例尺来绘制区域内地点分布情况平面图?
小刚家、小强家、小敏家的位置均是以学校为参照物来描述的,故选学校位置为原点.根据描述,可以以正东方向为x轴,以正北方向为y轴建立平面直角坐标系,并取比例尺1:10000(即图中1cm相当于实际中10000cm,即100米).
由学生画出平面直角坐标系,标出学校的位置,即(0,0).
引导学生一同完成示意图.
问题:选取学校所在位置为原点,并以正东、正北方向为x轴、y轴的正方向有什么优点?
可以很容易地写出三位同学家的位置.
活动2:归纳利用平面直角绘制区域内一些地点分布情况平面图的过程.
经过学生讨论、交流,教师适当引导后得出结论:
(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.
(应注意的问题:
用坐标表示地理位置时,一是要注意选择适当的位置为坐标原点,这里所说的适当,通常要么是比较有名的地点,要么是所要绘制的区域内较居中的位置;二是坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东西南北的方向与地理位置的方向一致;三是要注意标明比例尺和坐标轴上的单位长度.)
有时,由于地点比较集中,坐标平面又较小,各地点的名称在图上可以用代号标出,在图外另附名称.
活动3:进一步理解如何用坐标表示地理位置.
展示问题:(教材第56页活动1,公园平面图)
让学生分别画出直角坐标系,标出其他景点的位置.
三、课堂小结:让学生归纳说出如何利用坐标表示地理位置.
四、课后作业:第54页第5题、第8题.
7.2.2用坐标表示平移
教学目标:1.掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程.
2.发展学生的形象思维能力,和数形结合的意识.
3.用坐标表示平移体现了平面直角坐标系在数学中的应用.
4.培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化.
(经历探索点的坐标变化与点平移的关系,图形各个点坐标变化与图形平移的关系的过程,发展学生的形象思维能力和数形结合意识。)
重点:掌握坐标变化与图形平移的关系.
难点:利用坐标变化与图形平移的关系解决实际问题.
教学过程
一、引言
(1.回顾
问题一:什么叫做平移?
讨论结果:把一个图形整体沿某一方向移动一定的距离,图形的这种移动叫做平移。
问题二:平移后得到的新图形与原图形有什么关系?
讨论结果:平移后图形的位置改变,形状、大小不变;新图形与原图形对应点的连线平行且相等。)
2.上节课我们学习了用坐标表示地理位置,本节课我们继续研究坐标方法的另一个应用.
二、新课
展示问题:教材第56页图.
(1)如图将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,把点A向上平移4个单位长度呢?
(2)把点A向左或向下平移4个单位长度,观察他们的变化,你能从中发现什么规律吗?
(3)再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?
规律:在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-a)).
教师说明:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.
例如图(1),三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).
(1)将三角形ABC三个顶点的横坐标后减去6,纵坐标不变,分别得到点A1、B1、C1,依次连接A1、B1、C1各点,所得三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?
(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,依次连接A2、B2、C2各点,所得三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系?
引导学生动手操作,按要求画出图形后,解答此例题.
解:如图(2),所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向左平移6个单位长度得到.类似地,三角形A2B2C2与三角形ABC的大小、形状完全相同,它可以看作将三角形ABC向下平移5个单位长度得到.
课本P52思考题:由学生动手画图并解答.
归纳:
三、练习:教材第53页练习;习题6.2中第1、2、4题.
四、作业布置 第54页第3题
初中数学人教版七年级下册7.1.2平面直角坐标系教案设计: 这是一份初中数学人教版七年级下册7.1.2平面直角坐标系教案设计,共3页。教案主要包含了观察发现等内容,欢迎下载使用。
人教版七年级下册7.1.2平面直角坐标系教案设计: 这是一份人教版七年级下册7.1.2平面直角坐标系教案设计,共3页。教案主要包含了坐标的概念,观察思考等内容,欢迎下载使用。
初中数学人教版七年级下册7.1.2平面直角坐标系教案: 这是一份初中数学人教版七年级下册7.1.2平面直角坐标系教案,共5页。教案主要包含了知识与技能,过程与方法,情感态度与价值观,教学重点,教学难点等内容,欢迎下载使用。