所属成套资源:2022高考考点训练(选择题,填空题、大题)
- 模块九坐标系与参数方程练习题 试卷 4 次下载
- 模块一 三角函数与解三角形练习题 试卷 1 次下载
- 模块三数列综合问题 试卷 4 次下载
- 考点66 二项式定理练习题 试卷 2 次下载
- 考点65 排列与组合问题 试卷 3 次下载
考点67 随机抽样练习题
展开
这是一份考点67 随机抽样练习题,共9页。试卷主要包含了单选题,填空题等内容,欢迎下载使用。
考点67随机抽样一、单选题1.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数为A.101 B.808 C.1212 D.20122.采用系统抽样方法从人中抽取32人做问卷调查,为此将他们随机编号为,分组后在第一组采用简单随机抽样的方法抽到的号码为.抽到的人中,编号落入区间的人做问卷,编号落入区间的人做问卷,其余的人做问卷.则抽到的人中,做问卷的人数为A. B. C. D.3.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是A.抽签法 B.随机数法 C.系统抽样法 D.分层抽样法4.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是A.简单随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样5.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=A.9 B.10 C.12 D.136.在“世界读书日”前夕,为了了解某地名居民某天的阅读时间,从中抽取了名居民的阅读时间进行统计分析.在这个问题中,名居民的阅读时间的全体是A.总体 B.个体C.样本的容量 D.从总体中抽取的一个样本7.为了解名学生的学习情况,采用系统抽样的方法,从中抽取容量为的样本,则分段的间隔为A. B. C. D.8.已知某地区中小学生人数和近视情况分别如图(1)和图(2)所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取的学生进行调查,则在抽取的高中生中,近视人数约为( )A.1000 B.40 C.27 D.209.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为A.6 B.8 C.10 D.1210.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是A.抽签法 B.系统抽样法 C.分层抽样法 D.随机数法11.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生 B.200号学生 C.616号学生 D.815号学生12.已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A., B., C., D., 二、填空题13.打算从500名学生中抽取50名进行问卷调查,拟采纳系统抽样方式,为此将他们一一编号为1~500,并对编号进行分段,假设从第一个号码段中随机抽出的号码是2,那么从第五个号码段中抽出的号码应是______.14.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.15.某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.16.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.
参考答案1.B【详解】试题分析:由分层抽样的定义可得,解得,答案选B.考点:分层抽样 2.C【详解】从960人中用系统抽样方法抽取32人,则抽样距为k=,因为第一组号码为9,则第二组号码为9+1×30=39,…,第n组号码为9+(n-1)×30=30n-21,由451≤30n-21≤750,得,所以n=16,17,…,25,共有25-16+1=10(人).考点:系统抽样. 3.D【详解】试题分析:由于样本中男生与女生在学习兴趣与业余爱好方面存在差异性,因此所采用的抽样方法是分层抽样法,故选D.考点:抽样方法. 4.C【详解】试题分析:符合分层抽样法的定义,故选C.考点:分层抽样. 5.D【详解】试题分析::∵甲、乙、丙三个车间生产的产品件数分别是120,80,60,∴甲、乙、丙三个车间生产的产品数量的比依次为6:4:3,丙车间生产产品所占的比例,因为样本中丙车间生产产品有3件,占总产品的,所以样本容量n=3÷=13.考点:分层抽样方法 6.A【详解】试题分析:从5000份中抽取200份,样本的容量是200,抽取的200份是一个样本,每个居民的阅读时间就是一个个体,5000名居民的阅读时间的全体是总体.所以选A.【考点定位】统计基本概念. 7.C【详解】试题分析:由题意知,分段间隔为,故选C.考点:本题考查系统抽样的定义,属于中等题. 8.D【分析】根据高中生的总人数乘以抽样比可得所抽的高中生人数,再由近视率为即可求解.【详解】由图(1)知高中生的总人数为人,所以应抽取的高中生为人,抽取的高中生中,近视人数约为人,故选:D9.B【详解】试题分析:根据题意,由分层抽样知识可得:在高二年级的学生中应抽取的人数为:,故选B.考点:分层抽样. 10.C【详解】按照各种抽样方法的适用范围可知,应使用分层抽样.选C考点:本题考查几种抽样方法的概念、适用范围的判断,考查应用数学方法解决实际问题的能力. 11.C【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列,公差,所以,若,则,不合题意;若,则,不合题意;若,则,符合题意;若,则,不合题意.故选C.【点睛】本题主要考查系统抽样.12.B【详解】试题分析:由题意知,样本容量为,其中高中生人数为,高中生的近视人数为,故选B.【考点定位】本题考查分层抽样与统计图,属于中等题. 13.42【分析】由题设,根据等距抽样的特点确定第五个号码段中抽出的号码即可.【详解】从500名学生中抽取50名,那么每两相邻号码之间的距离是10,第一个号码是2,那么第五个号码段中抽取的号码应是.故答案为:4214.160【详解】∵某个年级共有980人,要从中抽取280人,∴抽取比例为,∴此样本中男生人数为,故答案为160.考点:本题考查了分层抽样的应用点评:掌握分层抽样的概念是解决此类问题的关键,属基础题 15.分层抽样.【详解】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为分层抽样.点睛:本题主要考查简单随机抽样,属于基础题.16.60【分析】采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的.【详解】∵该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,∴应从一年级本科生中抽取学生人数为:.故答案为60.
相关试卷
这是一份高三数学高考高分突破之概率统计专题06 随机抽样(解析版)67,共8页。
这是一份人教A版 (2019)必修 第二册9.1 随机抽样课后练习题,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份知识讲解_随机抽样_提高练习题,共10页。