【中考真题】2021年江西省南昌市红谷滩区凤凰城上海外国语学校中考数学模拟试卷(5)(含答案解析)
展开
这是一份【中考真题】2021年江西省南昌市红谷滩区凤凰城上海外国语学校中考数学模拟试卷(5)(含答案解析),共34页。试卷主要包含了﹣2021的相反数是,下列计算正确的是,下列说法不正确的是等内容,欢迎下载使用。
2021年江西省南昌市红谷滩区凤凰城上海外国语学校中考数学模拟试卷(5)
一.选择题(共6小题)
1.﹣2021的相反数是( )
A. B. C.2021 D.﹣2021
2.下列计算正确的是( )
A.a2•a3=a6 B.(ab)2=a2b2 C.(a2)3=a5 D.a2+2a2=3a4
3.下列说法不正确的是( )
A.打开电视机,电视里播放《小猪佩奇》是偶然事件
B.了解一批灯泡的使用寿命,适合抽样调查
C.一元二次方程x2﹣2x+1=0只有一个根
D.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.36,S乙2=0.54,甲的射击成绩稳定
4.如图是由一水桶抽象而成的几何图形,其俯视图是( )
A. B. C. D.
5.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为( )
A.(﹣1,) B.(﹣2,) C.(﹣,1) D.(﹣,2)
6.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),与y轴的交点为C,已知﹣2≤c≤﹣1,顶点坐标为(1,n),则下列结论正确的是( )
A.a+b>0
B.
C.对于任意实数m,不等式a+b>am2+bm恒成立
D.关于x的方程ax2+bx+c=n+1没有实数根
二.填空题(共6小题)
7.若式子在实数范围内有意义,则x的取值范围是 .
8.2014年1月10日上午,国家科学技术奖励大会在人民大会堂举行,物理化学家张存浩和物理学家程开甲荣获2013年国家最高科学家技术奖,获奖者的奖金额为500万元人民币.500万元用科学记数法可表示为 元.
9.如图把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=55°,则∠2= .
10.已知m,n是方程x2﹣2x﹣4=0的两实数根,则m2+mn+2n= .
11.中国魏晋时期的数学家刘徽首创“割圆术”,奠定了中国圆周率计算在世界上的领先地位.刘微提出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”,由此求得圆周率π的近似值.如图,设半径为r的圆内接正n边形的周长为C,圆的直径为d,当n=6时,π≈==3,则当n=12时,π≈= .(结果精确到0.01,参考数据:sin15°=cos75°≈0.259,sin75°=cos15°≈0.966)
12.如图,Rt△ABC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为 .
三.解答题(共12小题)
13.(1)计算:|1﹣|+()﹣1﹣2tan60°
(2)先化简,再求值:,其中x=﹣1.
14.如图,在△ABC中,∠B+∠C=110°,AD平分∠BAC,交BC于点D,DE∥AB,交AC于点E,求∠ADE的度数.
15.先化简代数式,再从﹣2,2,0三个数中选一个恰当的数作为a的值代入求值.
16.小明和小丽所在生活小区的管理人员为了方便业主合理规范摆放机动车,在小区内部道路的一侧按照标准画出了一些停车位.
(1)如图1,小明家楼下的道路上有五个空停车位,标号分别为1,2,3,4,5,如果有一辆机动车要随机停在这五个停车位中的一个里边,则该机动车停在“标号是奇数”停车位的概率是 .
(2)如图2,小丽家楼下的道路上有四个空停车位,标号分别为1,2,3,4,如果有两辆机动车要随机停在这四个停车位中的两个里边,请用列表或画树状图的方法得出这两辆机动车停在“标号是一个奇数和一个偶数”停车位的概率.
17.如图,已知四边形ABCD为菱形,对角线AC与BD相交于点O,E为AO上一点,过点E作EF⊥AC,请仅用无刻度的直尺,分别按下列要求画图(保留画图痕迹).
(1)在图1中,EF交AD于点F,画出线段EF关于BD的对称线段E'F':
(2)在图2中,点F在AD外时,画出线段EF关于BD的对称线段E'F'.
18.今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.
(1)试问去年每吨大蒜的平均价格是多少元?
(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?
19.我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:
代号
活动类型
A
经典诵读与写作
B
数学兴趣与培优
C
英语阅读与写作
D
艺体类
E
其他
为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).
(1)此次共调查了 名学生.
(2)将条形统计图补充完整.
(3)“数学兴趣与培优”所在扇形的圆心角的度数为 .
(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?
(5)学校将从喜欢“A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园“金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.
20.如图,在Rt△ABC中,∠C=90°,AC=2,BC=4,AC∥x轴,A、B两点在反比例函数y=(x>0)的图象上,延长CA交y轴于点D,AD=1.
(1)求该反比例函数的解析式;
(2)将△ABC绕点B顺时针旋转得到△EBF,使点C落在x轴上的点F处,点A的对应点为E,求旋转角的度数和点E的坐标.
21.有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角α的度数来调整晾杆的高度,图2是晾衣架的侧面的平面示意图,AB和CD分别是两根长度不等的支撑杆,夹角∠BOD=α,AO=70cm,BO=DO=80cm,CO=40cm.
(1)若α=56°,求点A离地面的高度AE;
(参考值:sin62°=cos28°≈0.88,sin28°=cos62°≈0.47,tan62°≈1.88,tan28°≈0.53.)
(2)调节α的大小,使A离地面高度AE=125cm时,求此时C点离地面的高度CF.
22.如图,⊙O是△ABC的外接圆,连接OC,过点A作AD∥OC交BC的延长线于点D,∠ABC=45°.
(1)求证:AD是⊙O的切线;
(2)若sin∠CAB=,⊙O的半径为,求AB的长.
23.(1)学习心得:小刚同学在学习完“圆”这一章内容后,感觉到有一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.
例如:如图1,在△ABC中,AB=AC,∠BAC=80°,D是△ABC外一点,且AD=AC,求∠BDC的度数.若以点A为圆心,AB为半径作辅助圆⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC= .
(2)问题解决:
如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的度数.
(3)问题拓展:
抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C,点P在抛物线上,直线PQ∥BC交x轴于点Q,连接BQ.
①若含45°角的直线三角板如图所示放置,其中,一个顶点与C重合,直角顶点D在BQ上,另一顶点E在PQ上,求Q的坐标;
②若含30°角的直角三角板一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,求点P的坐标.
24.【操作发现】如图(1),在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=45°,连接AC,BD交于点M.
①AC与BD之间的数量关系为 ;
②∠AMB的度数为 ;
【类比探究】如图(2),在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC,交BD的延长线于点M.请计算的值及∠AMB的度数;
【实际应用】如图(3),是一个由两个都含有30°角的大小不同的直角三角板ABC、DCE组成的图形,其中∠ACB=∠DCE=90°,∠A=∠D=30°且D、E、B在同一直线上,CE=1,BC=,求点A、D之间的距离.
2021年江西省南昌市红谷滩区凤凰城上海外国语学校中考数学模拟试卷(5)
参考答案与试题解析
一.选择题(共6小题)
1.﹣2021的相反数是( )
A. B. C.2021 D.﹣2021
【分析】根据相反数的概念解答即可.
【解答】解:﹣2021的相反数是2021,
故选:C.
【点评】本题考查的是相反数的概念,掌握只有符号不同的两个数叫做互为相反数是解题的关键.
2.下列计算正确的是( )
A.a2•a3=a6 B.(ab)2=a2b2 C.(a2)3=a5 D.a2+2a2=3a4
【分析】根据同底数幂的乘法底数不变指数相加;积的乘方等于乘方的积;幂的乘方底数不变指数相乘;合并同类项系数相加字母及指数不变,可得答案.
【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;
B、积的乘方等于乘方的积,故B正确;
C、幂的乘方底数不变指数相乘,故C错误;
D、合并同类项系数相加字母及指数不变,故D错误;
故选:B.
【点评】本题考查了幂的乘方与积的乘方,熟记法则并根据法则计算是解题关键.
3.下列说法不正确的是( )
A.打开电视机,电视里播放《小猪佩奇》是偶然事件
B.了解一批灯泡的使用寿命,适合抽样调查
C.一元二次方程x2﹣2x+1=0只有一个根
D.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.36,S乙2=0.54,甲的射击成绩稳定
【分析】根据随机事件、抽样调查的概念、一元二次方程根的情况及方差的意义逐一求解即可.
【解答】解:A.打开电视机,电视里播放《小猪佩奇》是偶然事件,此选项说法正确;
B.了解一批灯泡的使用寿命,适合抽样调查,此选项说法正确;
C.一元二次方程x2﹣2x+1=0有两个相等的实数根,此选项说法错误;
D.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.36,S乙2=0.54,甲的射击成绩的方差小,成绩稳定,此选项说法正确;
故选:C.
【点评】本题主要考查随机事件、抽样调查及一元二次方程的根、方差,关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
4.如图是由一水桶抽象而成的几何图形,其俯视图是( )
A. B. C. D.
【分析】根据从上面看得到的图形是俯视图,可得答案.
【解答】解:从上面看是一个有直径的圆环,
故选:D.
【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.
5.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为( )
A.(﹣1,) B.(﹣2,) C.(﹣,1) D.(﹣,2)
【分析】作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt△CBH中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH﹣OB=3﹣2=1,于是可写出C点坐标.
【解答】解:作CH⊥x轴于H,如图,
∵点B的坐标为(2,0),AB⊥x轴于点B,
∴A点横坐标为2,
当x=2时,y=x=2,
∴A(2,2),
∵△ABO绕点B逆时针旋转60°得到△CBD,
∴BC=BA=2,∠ABC=60°,
∴∠CBH=30°,
在Rt△CBH中,CH=BC=,
BH=CH=3,
OH=BH﹣OB=3﹣2=1,
∴C(﹣1,).
故选:A.
【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了一次函数图象上点的坐标特征和含30度的直角三角形三边的关系.
6.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0),与y轴的交点为C,已知﹣2≤c≤﹣1,顶点坐标为(1,n),则下列结论正确的是( )
A.a+b>0
B.
C.对于任意实数m,不等式a+b>am2+bm恒成立
D.关于x的方程ax2+bx+c=n+1没有实数根
【分析】A、由抛物线的顶点坐标代入可得a+b=n﹣c,由最小值为n可知c>n,可得结论A错误;
B、利用对称轴可得b=﹣2a,结合点A的坐标,可得c=﹣3a,代入已知中c的不等式中,可判定结论B正确;
C、由抛物线的顶点坐标及a>0,可得出n=a+b+c,且n≤ax2+bx+c,进而可得出对于任意实数m,a+b≤am2+bm总成立,结论C错误;
D、由抛物线的顶点坐标可得出抛物线y=ax2+bx+c与直线y=n只有一个交点,将直线上移可得出抛物线y=ax2+bx+c与直线y=n+1有两个交点,进而可得出关于x的方程ax2+bx+c=n+1有两个不相等的实数根.
【解答】解:A、∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
∴a+b+c=n,
∴a+b=n﹣c,
由图象可知:抛物线开口向上,有最小值是n,
∴n<c,
∴a+b=n﹣c<0,结论A错误;
B、∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
∴﹣=1,
∴b=﹣2a,
∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),
∴a﹣b+c=3a+c=0,
∴c=﹣3a
∵﹣2≤c≤﹣1,
∴﹣2≤﹣3a≤﹣1,
∴,结论B正确;
C、∵a>0,顶点坐标为(1,n),
∴n=a+b+c,且n≤ax2+bx+c,
∴对于任意实数m,a+b≤am2+bm总成立,结论C错误;
D、∵抛物线y=ax2+bx+c的顶点坐标为(1,n),
∴抛物线y=ax2+bx+c与直线y=n只有一个交点,
∵抛物线开口向上,
∴抛物线y=ax2+bx+c与直线y=n+1有两个交点,
∴关于x的方程ax2+bx+c=n+1有两个不相等的实数根,结论D错误.
故选:B.
【点评】本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.
二.填空题(共6小题)
7.若式子在实数范围内有意义,则x的取值范围是 x>2 .
【分析】分式有意义,分母不等于零;二次根式的被开方数是非负数.
【解答】解:依题意,得
x﹣2>0,
解得x>2.
故答案是:x>2.
【点评】本题考查了二次根式有意义的条件,分式有意义的条件.
函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
8.2014年1月10日上午,国家科学技术奖励大会在人民大会堂举行,物理化学家张存浩和物理学家程开甲荣获2013年国家最高科学家技术奖,获奖者的奖金额为500万元人民币.500万元用科学记数法可表示为 5×106 元.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:将500万用科学记数法表示为5×106.
故答案为:5×106.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
9.如图把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=55°,则∠2= 35° .
【分析】直接利用平行线的性质得出∠3的度数,进而得出答案.
【解答】解:如图所示:由题意可得:∠1=∠3=55°,
则∠2=90°﹣55°=35°.
故答案为:35°.
【点评】此题主要考查了平行线的性质,正确得出∠3的度数是解题关键.
10.已知m,n是方程x2﹣2x﹣4=0的两实数根,则m2+mn+2n= 4 .
【分析】先根据一元二次方程根的定义得到m2=2m+4,则m2+mn+2n可变形为2(m+n)+mn+4,再根据根与系数的关系得到m+n=2,mn=﹣4,然后利用整体代入的方法计算代数式的值.
【解答】解:∵m是方程x2﹣2x﹣4=0的实数根,
∴m2﹣2m﹣4=0,
∴m2=2m+4,
∴m2+mn+2n=2m+4+mn+2n=2(m+n)+mn+4,
∵m,n是方程x2﹣2x﹣4=0的两实数根,
∴m+n=2,mn=﹣4,
∴m2+mn+2n=2×2﹣4+4=4.
故答案为4.
【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.
11.中国魏晋时期的数学家刘徽首创“割圆术”,奠定了中国圆周率计算在世界上的领先地位.刘微提出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”,由此求得圆周率π的近似值.如图,设半径为r的圆内接正n边形的周长为C,圆的直径为d,当n=6时,π≈==3,则当n=12时,π≈= 3.11 .(结果精确到0.01,参考数据:sin15°=cos75°≈0.259,sin75°=cos15°≈0.966)
【分析】圆的内接正十二边形被半径分成顶角为30°的十二个等腰三角形,作辅助线构造直角三角形,根据中心角的度数以及半径的大小,求得l=24r•sin15°,d=2r,进而得到答案.
【解答】解:如图,圆的内接正十二边形被半径分成12个如图所示的等腰三角形,其顶角为30°,即∠AOB=30°,
作OH⊥AB于点H,则∠AOH=15°,
∵AO=BO=r,
∵Rt△AOH中,sin∠AOH=,即sin15°=,
∴AH=r×sin15°,AB=2AH=2r×sin15°,
∴l=12×2r×sin15°=24r×sin15°,
又∵d=2r,
∴π≈.
故答案为:3.11.
【点评】本题主要考查了正多边形和圆以及解直角三角形的运用,正确构造直角三角形是解题的关键.
12.如图,Rt△ABC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为 2或2﹣2 .
【分析】在Rt△ABC中,BC=AC=2,于是得到AB=2,∠B=∠A′CB=45°,①如图1,当A′D∥BC,设AD=x,根据折叠的性质得到∠A′=∠A=∠A′CB=45°,A′D=AD=x,推出A′C⊥AB,求得BH=BC=,DH=A′D=x,然后列方程即可得到结果,②如图2,当A′D∥AC,根据折叠的性质得到AD=A′D,AC=A′C,∠ACD=∠A′CD,根据平行线的性质得到∠A′DC=∠ACD,于是得到∠A′DC=∠A′CD,推出A′D=A′C,于是得到AD=AC=2.
【解答】解:Rt△ABC中,BC=AC=2,
∴AB=2,∠B=∠A′CB=45°,
①如图1,当A′D∥BC,设AD=x,
∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,
∴∠A′=∠A=∠A′CB=45°,A′D=AD=x,
∵∠B=45°,
∴A′C⊥AB,
∴BH=BC=,DH=A′D=x,
∴x+=2,
∴x=2﹣2,
∴AD=2﹣2;
②如图2,当A′D∥AC,
∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,
∴AD=A′D,AC=A′C,∠ACD=∠A′CD,
∵∠A′DC=∠ACD,
∴∠A′DC=∠A′CD,
∴A′D=A′C,
∴AD=AC=2,
综上所述:AD的长为:2或2﹣2.
【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,熟练掌握折叠的性质是解题的关键.
三.解答题(共12小题)
13.(1)计算:|1﹣|+()﹣1﹣2tan60°
(2)先化简,再求值:,其中x=﹣1.
【分析】(1)根据绝对值、负整数指数幂、特殊角的三角函数值可以解答本题;
(2)根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
【解答】解:(1)|1﹣|+()﹣1﹣2tan60°
=﹣1+2﹣2×
=﹣1+2﹣2
=﹣+1;
(2)
=
=
=
=,
当x=﹣1时,原式===.
【点评】本题考查分式的化简求值、绝对值、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.
14.如图,在△ABC中,∠B+∠C=110°,AD平分∠BAC,交BC于点D,DE∥AB,交AC于点E,求∠ADE的度数.
【分析】根据三角形内角和定理求出∠BAC,根据角平分线定义求出∠BAD,根据平行线的性质得出∠ADE=∠BAD即可.
【解答】解:∵在△ABC中,∠B+∠C=110°,
∴∠BAC=180°﹣∠B﹣∠C=70°,
∵AD是△ABC的角平分线,
∴∠BAD=∠BAC=35°,
∵DE∥AB,
∴∠ADE=∠BAD=35°.
【点评】本题考查了平行线的性质,三角形内角和定理,角平分线定义的应用,注意:两直线平行,内错角相等.
15.先化简代数式,再从﹣2,2,0三个数中选一个恰当的数作为a的值代入求值.
【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将a=0代入计算即可求出值.
【解答】解:原式=÷
=•
=,
当a=0时,原式==2.
【点评】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.
16.小明和小丽所在生活小区的管理人员为了方便业主合理规范摆放机动车,在小区内部道路的一侧按照标准画出了一些停车位.
(1)如图1,小明家楼下的道路上有五个空停车位,标号分别为1,2,3,4,5,如果有一辆机动车要随机停在这五个停车位中的一个里边,则该机动车停在“标号是奇数”停车位的概率是 .
(2)如图2,小丽家楼下的道路上有四个空停车位,标号分别为1,2,3,4,如果有两辆机动车要随机停在这四个停车位中的两个里边,请用列表或画树状图的方法得出这两辆机动车停在“标号是一个奇数和一个偶数”停车位的概率.
【分析】(1)直接利用概率公式求解;
(2)画树状图展示所有12种等可能的结果数,再找出两辆机动车停在“标号是一个奇数和一个偶数”停车位的结果数,然后根据概率公式求解.
【解答】解:(1)该机动车停在“标号是奇数”停车位的概率=;
故答案为;
(2)画树状图为:
共有12种等可能的结果数,其中两辆机动车停在“标号是一个奇数和一个偶数”停车位的结果数为8,
所以两辆机动车停在“标号是一个奇数和一个偶数”停车位的概率==.
【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
17.如图,已知四边形ABCD为菱形,对角线AC与BD相交于点O,E为AO上一点,过点E作EF⊥AC,请仅用无刻度的直尺,分别按下列要求画图(保留画图痕迹).
(1)在图1中,EF交AD于点F,画出线段EF关于BD的对称线段E'F':
(2)在图2中,点F在AD外时,画出线段EF关于BD的对称线段E'F'.
【分析】(1)先作F点关于AC的对称点,再作此点和F点关于O点的对称点可确定E′、F′;
(2)同(1)的方法确定E′,再作AF关于BD的对称图形可确定F′.
【解答】解:(1)如图1,线段E′F′为所作;
(2)线段E′F′为所作.
【点评】本题考查了作图﹣轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了菱形的性质.
18.今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.
(1)试问去年每吨大蒜的平均价格是多少元?
(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?
【分析】(1)设去年每吨大蒜的平均价格是x元,则第一次采购的平均价格为(x+500)元,第二次采购的平均价格为(x﹣500)元,根据第二次的采购数量是第一次采购数量的两倍,据此列方程求解;
(2)先求出今年所采购的大蒜数,根据采购的大蒜必需在30天内加工完毕,蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,据此列不等式组求解,然后求出最大利润.
【解答】解:(1)设去年每吨大蒜的平均价格是x元,
由题意得,×2=,
解得:x=3500,
经检验:x=3500是原分式方程的解,且符合题意,
答:去年每吨大蒜的平均价格是3500元;
(2)由(1)得,今年的大蒜数为:×3=300(吨),
设应将m吨大蒜加工成蒜粉,则应将(300﹣m)吨加工成蒜片,
由题意得,,
解得:100≤m≤120,
总利润为:1000m+600(300﹣m)=400m+180000,
当m=120时,利润最大,为228000元.
答:应将120吨大蒜加工成蒜粉,最大利润为228000元.
【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.
19.我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:
代号
活动类型
A
经典诵读与写作
B
数学兴趣与培优
C
英语阅读与写作
D
艺体类
E
其他
为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).
(1)此次共调查了 200 名学生.
(2)将条形统计图补充完整.
(3)“数学兴趣与培优”所在扇形的圆心角的度数为 108° .
(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?
(5)学校将从喜欢“A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园“金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.
【分析】(1)由A类型人数及其所占百分比可得总人数;
(2)总人数乘以D的百分比求得其人数,再根据各类型人数之和等于总人数求得B的人数,据此可补全图形;
(3)用360°乘以B类型人数所占比例;
(4)总人数乘以前三项人数之和所占比例即可得;
(5)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果与挑选的两位学生恰好是一男一女的情况,再利用概率公式求解即可求得答案
【解答】解:(1)此次调查的总人数为40÷20%=200(人),
故答案为:200;
(2)D类型人数为200×25%=50(人),
B类型人数为200﹣(40+30+50+20)=60(人),
补全图形如下:
(3)“数学兴趣与培优”所在扇形的圆心角的度数为360°×=108°,
故答案为:108°;
(4)估计该校喜欢A、B、C三类活动的学生共有2000×=1300(人);
(5)画树状图如下:
,
由树状图知,共有12种等可能结果,其中一男一女的有8种结果,
∴刚好一男一女参加决赛的概率=.
【点评】此题考查了列表法或树状图法求概率、频数分布直方图、扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.
20.如图,在Rt△ABC中,∠C=90°,AC=2,BC=4,AC∥x轴,A、B两点在反比例函数y=(x>0)的图象上,延长CA交y轴于点D,AD=1.
(1)求该反比例函数的解析式;
(2)将△ABC绕点B顺时针旋转得到△EBF,使点C落在x轴上的点F处,点A的对应点为E,求旋转角的度数和点E的坐标.
【分析】(1)设A(1,k),再表示出B(3,k﹣4),则利用反比例函数图象上点的坐标特征得到3(k﹣4)=k,解方程求出k即可得到该反比例函数的解析式;
(2)作BM⊥x轴于M,EN⊥x轴于N,如图,根据旋转的性质得BF=BC=4,EF=AC=2,∠BFE=∠BCA=90°,∠CBF等于旋转角,再计算出BM=CM﹣BC=2,则在Rt△BMF中,利用三角函数可求出∠MBF=60°,MF=BM=2,于是得到旋转角为120°,然后证明Rt△BMF∽Rt△FNE,利用相似比求出FN和EN,从而可得到E点坐标.
【解答】解:(1)∵AC∥x轴,AD=1,
∴A(1,k),
∵∠C=90°,AC=2,BC=4,
∴B(3,k﹣4),
∵点B在y=的图象上,
∴3(k﹣4)=k,解得k=6,
∴该反比例函数的解析式为y=;
(2)作BM⊥x轴于M,EN⊥x轴于N,如图,
∵△ABC绕点B顺时针旋转得到△EBF,
∴BF=BC=4,EF=AC=2,∠BFE=∠BCA=90°,∠CBF等于旋转角,
∵BC⊥x轴,A(1,6),
∴BM=CM﹣BC=6﹣4=2,
在Rt△BMF中,∵cos∠MBF===,
∴∠MBF=60°,MF=BM=2,
∴∠CBF=180°﹣∠MBF=120°,
∴旋转角为120°;
∵∠BFM+∠MBF=90°,∠BFM+∠EFN=90°,
∴∠MBF=∠EFN,
∴Rt△BMF∽Rt△FNE,
∴==,即==,
∴FN=1,EN=,
∴ON=OM+MF+FN=3+2+1=4+2,
∴E点坐标为(4+2,).
【点评】本题考查了用待定系数法求反比例函数的解析式:先设出含有待定系数的反比例函数解析式y=xk(k为常数,k≠0);再把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;接着解方程,求出待定系数;然后写出解析式.也考查了旋转的性质.解决本题的关键是作BM⊥x轴于M,EN⊥x轴于N,构建Rt△BMF∽Rt△FNE.
21.有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角α的度数来调整晾杆的高度,图2是晾衣架的侧面的平面示意图,AB和CD分别是两根长度不等的支撑杆,夹角∠BOD=α,AO=70cm,BO=DO=80cm,CO=40cm.
(1)若α=56°,求点A离地面的高度AE;
(参考值:sin62°=cos28°≈0.88,sin28°=cos62°≈0.47,tan62°≈1.88,tan28°≈0.53.)
(2)调节α的大小,使A离地面高度AE=125cm时,求此时C点离地面的高度CF.
【分析】(1)过O作OG⊥BD于点G,根据等腰三角形的性质和平行线的性质可得∠EAB=∠BOG=28°,再利用锐角三角函数即可解决问题;
(2)根据已知条件证明△AEB∽△CFD,对应边成比例即可求出CF的高度.
【解答】解:(1)如图,过O作OG⊥BD于点G,
∵AE⊥BD,
∴OG∥AE,
∵BO=DO,
∴OG平分∠BOD,
∴∠BOG=∠BOD=×56°=28°,
∴∠EAB=∠BOG=28°,
在Rt△ABE中,AB=AO+BO=70+80=150(cm),
∴AE=AB•cos∠EAB=150×cos28°≈150×0.88=132(cm),
答:点A离地面的高度AE约为132cm;
(2)∵OG∥AE,
∴∠EAB=∠BOG,
∵CF⊥BD,
∴CF∥OG,
∴∠DCF=∠DOG,
∵∠BOG=∠DOG,
∴∠BAE=∠DCF,
∵∠AEB=∠CFD=90°,
∴△AEB∽△CFD,
∴=,
∴CF===100(cm),
答:C点离地面的高度CF为100cm.
【点评】本题考查了解直角三角形的应用,解决本题的关键是综合运用锐角三角函数,等腰三角形的性质,相似三角形的判定与性质等知识.
22.如图,⊙O是△ABC的外接圆,连接OC,过点A作AD∥OC交BC的延长线于点D,∠ABC=45°.
(1)求证:AD是⊙O的切线;
(2)若sin∠CAB=,⊙O的半径为,求AB的长.
【分析】(1)连接OA,根据圆周角定理可知∠AOC=2∠ABC=90°,利用平行线的性质即可求出∠OAD=90°,从而可知AD是⊙O的切线;
(2)过C作CE⊥AB于E,根据勾股定理得到AC=5,根据三角函数的定义得到CE=3,AE=4,于是得到结论.
【解答】(1)证明:连接OA,
∵∠ABC=45°,
∴∠AOC=2∠ABC=90°,
∵AD∥OC,
∴∠DAO=∠COA=90°,
∵OA是⊙O的半径,
∴AD是⊙O的切线;
(2)解:过C作CE⊥AB于E,
∵∠AOC=90°,
AO=OC=,
∴AC=5,
∵∠AEC=90°,
∴sin∠CAE==,
∴CE=3,AE=4,
∵∠CEB=90°,∠ABC=45°,
∴∠BCE=45°,
∴CE=BE=3,
∴AB=AE+BE=7.
【点评】本题考查了勾股定理,圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键.
23.(1)学习心得:小刚同学在学习完“圆”这一章内容后,感觉到有一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.
例如:如图1,在△ABC中,AB=AC,∠BAC=80°,D是△ABC外一点,且AD=AC,求∠BDC的度数.若以点A为圆心,AB为半径作辅助圆⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC= 40° .
(2)问题解决:
如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的度数.
(3)问题拓展:
抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C,点P在抛物线上,直线PQ∥BC交x轴于点Q,连接BQ.
①若含45°角的直线三角板如图所示放置,其中,一个顶点与C重合,直角顶点D在BQ上,另一顶点E在PQ上,求Q的坐标;
②若含30°角的直角三角板一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,求点P的坐标.
【分析】(1)利用同弦所对的圆周角是所对圆心角的一半求解.
(2)由A、B、C、D共圆,得出∠BDC=∠BAC,
(3)①先求出抛物线顶点的坐标,再由点D、C、Q、E共圆,得出∠CQB=∠OED=45°,求出CQ,再求点Q的坐标.
②分两种情况,Ⅰ、当30°的角的顶点与点C重合时,Ⅱ、当60°的角的顶点与点C重合时,运用点D、C、Q、E共圆,求出CQ即点P的横坐标,再代入抛物线求出点P的纵坐标,即可求出点P的坐标.
【解答】解:(1)∵AB=AC,AD=AC,
∴以点A为圆心,点B、C、D必在⊙A上,
∵∠BAC是⊙A的圆心角,而∠BDC是圆周角,
∴∠BDC=∠BAC=40°,
(2)如图2,
∵∠BAD=∠BCD=90°,
∴点A、B、C、D共圆,
∴∠BDC=∠BAC,
∵∠BDC=25°,
∴∠BAC=25°,
(3)①如图3
∵点B为抛物线的顶点,
∴点B的坐标为(1,3),
∵45°角的直角三角板如图所示放置,其中,一个顶点与C重合,直角顶点D在BQ上,另一顶点E在PQ上,
∴点D、C、Q、E共圆,
∴∠CQB=∠CED=45°,
∴CQ=BC=3,
∴OQ=4,
∴点Q的坐标为(4,0),
②如图4,
Ⅰ、当30°的角的顶点与点C重合时,
∵直角三角板30°角的顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上
∴点D、C、Q、E共圆,
∴∠CQB=∠CED=60°,
∴CQ=BC=,
∴OQ=1+,
∴把1+代入得y=,
∴点P的坐标是(1+,)
Ⅱ、如图5,
当60°的角的顶点与点C重合时,
∵直角三角板60°角的顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上
∴点D、C、Q、E共圆,
∴∠CQB=∠CED=30°,
∴CQ=BC=3,
∴OQ=1+3,
∴把1+3代入得y=﹣5,
∴点P的坐标是(1+3,﹣5)
综上所述,点P的坐标是(1+,)或(1+3,﹣5).
【点评】本题主要考查了圆的综合题,解题的关键就是运用同弦对的圆周角相等.
24.【操作发现】如图(1),在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=45°,连接AC,BD交于点M.
①AC与BD之间的数量关系为 AC=BD ;
②∠AMB的度数为 45° ;
【类比探究】如图(2),在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC,交BD的延长线于点M.请计算的值及∠AMB的度数;
【实际应用】如图(3),是一个由两个都含有30°角的大小不同的直角三角板ABC、DCE组成的图形,其中∠ACB=∠DCE=90°,∠A=∠D=30°且D、E、B在同一直线上,CE=1,BC=,求点A、D之间的距离.
【分析】【操作发现】如图(1),证明△COA≌△DOB(SAS),即可解决问题.
【类比探究】如图(2),证明△COA∽△ODB,可得==,∠MAK=∠OBK,已解决可解决问题.
【实际应用】分两种情形解直角三角形求出BE,再利用相似三角形的性质解决问题即可.
【解答】解:【操作发现】如图(1)中,设OA交BD于K.
∵∠AOB=∠COD=45°,
∴∠COA=∠DOB,
∵OA=OB,OC=OD,
∴△COA≌△DOB(SAS),
∴AC=DB,∠CAO=∠DBO,
∵∠MKA=∠BKO,
∴∠AMK=∠BOK=45°,
故答案为:AC=BD,∠AMB=45°
【类比探究】如图(2)中,
在△OAB和△OCD中,∵∠AOB=∠COD=90°,∠OAB=∠OCD=30°,
∴∠COA=∠DOB,OC=OD,OA=OB,
∴=,
∴△COA∽△DOB,
∴==,∠MAK=∠OBK,
∵∠AKM=∠BKO,
∴∠AMK=∠BOK=90°.
【实际应用】如图3﹣1中,作CH⊥BD于H,连接AD.
在Rt△DCE中,∵∠DCE=90°,∠CDE=30°,EC=1,
∴∠CEH=60°,
∵∠CHE=90°,
∴∠HCE=30°,
∴EH=EC=,
∴CH=,
在Rt△BCH中,BH===,
∴BE=BH﹣EH=4,
∵△DCA∽△ECB,
∴AD:BE=CD:EC=,
∴AD=4.
如图3﹣2中,连接AD,作 CH⊥DE于H.
同法可得BH=,EH=,
∴BE=+=5,
∵△DCA∽△ECB,
∴AD:BE=CD:EC=,
∴AD=5.
综上所述,AD的长为4或5.
【点评】本题属于相似形综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2021/11/14 23:15:56;用户:张家港二中;邮箱:zjg2z@xyh.com;学号:41479226
菁优网APP 菁优网公众号 菁优网小程序
相关试卷
这是一份2023年江西省南昌市红谷滩区凤凰城上海外国语学校中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年江西省南昌市红谷滩区凤凰城上海外国语学校中考数学二模试卷,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份【中考真题】2021年江西省南昌市红谷滩区凤凰城上海外国语学校中考数学模拟试卷(含答案解析),共20页。试卷主要包含了﹣的相反数是,今年的政府工作报告中指出,下列运算正确的是,已知某快递公司的收费标准为,计算等内容,欢迎下载使用。