所属成套资源:2019年人教版全国各省市中考数学真题答案及解析汇总
2019年人教版浙江省温州市中考数学试卷及答案解析
展开
这是一份2019年人教版浙江省温州市中考数学试卷及答案解析,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2019年浙江省温州市中考数学试卷
一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)
1.(4分)计算:(﹣3)×5的结果是( )
A.﹣15 B.15 C.﹣2 D.2
2.(4分)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为( )
A.0.25×1018 B.2.5×1017 C.25×1016 D.2.5×1016
3.(4分)某露天舞台如图所示,它的俯视图是( )
A. B.
C. D.
4.(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( )
A. B. C. D.
5.(4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有( )
A.20人 B.40人 C.60人 D.80人
6.(4分)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为( )
近视眼镜的度数y(度)
200
250
400
500
1000
镜片焦距x(米)
0.50
0.40
0.25
0.20
0.10
A.y= B.y= C.y= D.y=
7.(4分)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )
A.π B.2π C.3π D.6π
8.(4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为( )
A.米 B.米 C.米 D.米
9.(4分)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是( )
A.有最大值﹣1,有最小值﹣2
B.有最大值0,有最小值﹣1
C.有最大值7,有最小值﹣1
D.有最大值7,有最小值﹣2
10.(4分)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为( )
A. B. C. D.
二、填空题(本题有6小题,每小题5分,共30分)
11.(5分)分解因式:m2+4m+4= .
12.(5分)不等式组的解为 .
13.(5分)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有 人.
14.(5分)如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧()上,若∠BAC=66°,则∠EPF等于 度.
15.(5分)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为 cm.
16.(5分)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为 分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'﹣BE为 分米.
三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)
17.(10分)计算:
(1)|﹣6|﹣+(1﹣)0﹣(﹣3).
(2)﹣.
18.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.
(1)求证:△BDE≌△CDF.
(2)当AD⊥BC,AE=1,CF=2时,求AC的长.
19.(8分)车间有20名工人,某一天他们生产的零件个数统计如下表.
车间20名工人某一天生产的零件个数统计表
生产零件的个数(个)
9
10
11
12
13
15
16
19
20
工人人数(人)
1
1
6
4
2
2
2
1
1
(1)求这一天20名工人生产零件的平均个数.
(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,
从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?
20.(8分)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.
(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°.
(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.
21.(10分)如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)
(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.
(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B2重合.已知m>0,n>0,求m,n的值.
22.(10分)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.
(1)求证:四边形DCFG是平行四边形.
(2)当BE=4,CD=AB时,求⊙O的直径长.
23.(12分)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.
(1)求该旅行团中成人与少年分别是多少人?
(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.
①若由成人8人和少年5人带队,则所需门票的总费用是多少元?
②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.
24.(14分)如图,在平面直角坐标系中,直线y=﹣x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.
(1)求点B的坐标和OE的长.
(2)设点Q2为(m,n),当=tan∠EOF时,求点Q2的坐标.
(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.
①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.
②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.
2019年浙江省温州市中考数学试卷
参考答案与试题解析
一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)
1.解:(﹣3)×5=﹣15;
故选:A.
2.解:
科学记数法表示:250 000 000 000 000 000=2.5×1017
故选:B.
3.解:它的俯视图是:
故选:B.
4.解:从中任意抽取1张,是“红桃”的概率为,
故选:A.
5.解:鱼类总数:40÷20%=200(人),
选择黄鱼的:200×40%=80(人),
故选:D.
6.解:由表格中数据可得:xy=100,
故y关于x的函数表达式为:y=.
故选:A.
7.解:该扇形的弧长==3π.
故选:C.
8.解:作AD⊥BC于点D,
则BD=0.3=,
∵cosα=,
∴sinα=,
解得,AB=米,
故选:B.
9.解:∵y=x2﹣4x+2=(x﹣2)2﹣2,
∴在﹣1≤x≤3的取值范围内,当x=2时,有最小值﹣2,
当x=﹣1时,有最大值为y=9﹣2=7.
故选:D.
10.解:如图,连接ALGL,PF.
由题意:S矩形AMLD=S阴=a2﹣b2,PH=,
∵点A,L,G在同一直线上,AM∥GN,
∴△AML∽△GNL,
∴=,
∴=,
整理得a=3b,
∴===,
故选:C.
二、填空题(本题有6小题,每小题5分,共30分)
11.解:原式=(m+2)2.
故答案为:(m+2)2.
12.解:,
由①得,x>1,
由②得,x≤9,
故此不等式组的解集为:1<x≤9.
故答案为:1<x≤9.
13.解:由直方图可得,
成绩为“优良”(80分及以上)的学生有:60+30=90(人),
故答案为:90.
14.解:连接OE,OF
∵⊙O分别切∠BAC的两边AB,AC于点E,F
∴OE⊥AB,OF⊥AC
又∵∠BAC=66°
∴∠EOF=114°
∵∠EOF=2∠EPF
∴∠EPF=57°
故答案为:57°
15.解:如图所示,连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,
∵三个菱形全等,
∴CO=HO,∠AOH=∠BOC,
又∵∠AOB=∠AOH+∠BOH=90°,
∴∠COH=∠BOC+∠BOH=90°,
即△COH是等腰直角三角形,
∴∠HCO=∠CHO=45°=∠HOG=∠COK,
∴∠CKO=90°,即CK⊥IO,
设CK=OK=x,则CO=IO=x,IK=x﹣x,
∵Rt△CIK中,(x﹣x)2+x2=22,
解得x2=2+,
又∵S菱形BCOI=IO×CK=IC×BO,
∴x2=×2×BO,
∴BO=2+2,
∴BE=2BO=4+4,AB=AE=BO=4+2,
∴△ABE的周长=4+4+2(4+2)=12+8,
故答案为:12+8.
16.解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.
∵AM⊥CD,
∴∠QMP=∠MPO=∠OQM=90°,
∴四边形OQMP是矩形,
∴QM=OP,
∵OC=OD=10,∠COD=60°,
∴△COD是等边三角形,
∵OP⊥CD,
∴∠COP=∠COD=30°,
∴QM=OP=OC•cos30°=5(分米),
∵∠AOC=∠QOP=90°,
∴∠AOQ=∠COP=30°,
∴AQ=OA=5(分米),
∴AM=AQ+MQ=5+5.
∵OB∥CD,
∴∠BOD=∠ODC=60°
在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=2(分米),
在Rt△PKE中,EK==2(分米)
∴BE=10﹣2﹣2=(8﹣2)(分米),
在Rt△OFJ中,OJ=OF•cos60°=2(分米),FJ=2(分米),
在Rt△FJE′中,E′J==2,
∴B′E′=10﹣(2﹣2)=12﹣2,
∴B′E′﹣BE=4.
故答案为5+5,4.
三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)
17.解:(1)原式=6﹣3+1+3
=7;
(2)原式=
=
=.
18.(1)证明:∵CF∥AB,
∴∠B=∠FCD,∠BED=∠F,
∵AD是BC边上的中线,
∴BD=CD,
∴△BDE≌△CDF(AAS);
(2)解:∵△BDE≌△CDF,
∴BE=CF=2,
∴AB=AE+BE=1+2=3,
∵AD⊥BC,BD=CD,
∴AC=AB=3.
19.解:(1)=×(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个);
答:这一天20名工人生产零件的平均个数为13个;
(2)中位数为=12(个),众数为11个,
当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性;
当定额为12个时,有12人达标,6人获奖,不利于提高大多数工人的积极性;
当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性;
∴定额为11个时,有利于提高大多数工人的积极性.
20.解:(1)满足条件的△EFG,如图1,2所示.
(2)满足条件的四边形MNPQ如图所示.
21.解:(1)令y=0,则﹣,
解得,x1=﹣2,x2=6,
∴A(﹣2,0),B(6,0),
由函数图象得,当y≥0时,﹣2≤x≤6;
(2)由题意得,B1(6﹣n,m),B2(﹣n,m),
函数图象的对称轴为直线,
∵点B1,B2在二次函数图象上且纵坐标相同,
∴,
∴n=1,
∴,
∴m,n的值分别为,1.
22.(1)证明:连接AE,
∵∠BAC=90°,
∴CF是⊙O的直径,
∵AC=EC,
∴CF⊥AE,
∵AD是⊙O的直径,
∴∠AED=90°,
即GD⊥AE,
∴CF∥DG,
∵AD是⊙O的直径,
∴∠ACD=90°,
∴∠ACD+∠BAC=180°,
∴AB∥CD,
∴四边形DCFG是平行四边形;
(2)解:由CD=AB,
设CD=3x,AB=8x,
∴CD=FG=3x,
∵∠AOF=∠COD,
∴AF=CD=3x,
∴BG=8x﹣3x﹣3x=2x,
∵GE∥CF,
∴,
∵BE=4,
∴AC=CE=6,
∴BC=6+4=10,
∴AB==8=8x,
∴x=1,
在Rt△ACF中,AF=10,AC=6,
∴CF==3,
即⊙O的直径长为3.
23.解:(1)设成人有x人,少年y人,
,
解得,,
答:该旅行团中成人与少年分别是17人、5人;
(2)①由题意可得,
由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元),
答:由成人8人和少年5人带队,则所需门票的总费用是1320元;
②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,
当10≤a≤17时,
若a=10,则费用为100×10+100×b×0.8≤1200,得b≤2.5,
∴b的最大值是2,此时a+b=12,费用为1160元;
若a=11,则费用为100×11+100×b×0.8≤1200,得b≤,
∴b的最大值是1,此时a+b=12,费用为1180元;
若a≥12,100a≥1200,即成人门票至少是1200元,不合题意,舍去;
当1≤a<10时,
若a=9,则费用为100×9+100b×0.8+100×1×0.6≤1200,得b≤3,
∴b的最大值是3,a+b=12,费用为1200元;
若a=8,则费用为100×8+100b×0.8+100×2×0.6≤1200,得b≤3.5,
∴b的最大值是3,a+b=11<12,不合题意,舍去;
同理,当a<8时,a+b<12,不合题意,舍去;
综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.
24.解:(1)令y=0,则﹣x+4=0,
∴x=8,
∴B(8,0),
∵C(0,4),
∴OC=4,OB=8,
在Rt△BOC中,BC==4,
又∵E为BC中点,
∴OE=BC=2;
(2)如图1,作EM⊥OC于M,则EM∥CD,
∵E是BC的中点
∴M是OC的中点
∴EM=OB=4,OE=BC=2
∵∠CDN=∠NEM,∠CND=∠MNE
∴△CDN∽△MEN,
∴=1,
∴CN=MN=1,
∴EN==,
∵S△ONE=EN•OF=ON•EM,
∴OF==,
由勾股定理得:EF===,
∴tan∠EOF===,
∴==,
∵n=﹣m+4,
∴m=6,n=1,
∴Q2(6,1);
(3)①∵动点P、Q同时作匀速直线运动,
∴s关于t成一次函数关系,设s=kt+b,
∵当点P运动到AO中点时,点Q恰好与点C重合,
∴t=2时,CD=4,DQ3=2,
∴s=Q3C==2,
∵Q3(﹣4,6),Q2(6,1),
∴t=4时,s==5,
将或代入得,解得:,
∴s=﹣,
②(i)当PQ∥OE时,如图2,∠QPB=∠EOB=∠OBE,
作QH⊥x轴于点H,则PH=BH=PB,
Rt△ABQ3中,AQ3=6,AB=4+8=12,
∴BQ3==6,
∵BQ=6﹣s=6﹣t+=7﹣t,
∵cos∠QBH====,
∴BH=14﹣3t,
∴PB=28﹣6t,
∴t+28﹣6t=12,t=;
(ii)当PQ∥OF时,如图3,过点Q作QG⊥AQ3于点G,过点P作PH⊥GQ于点H,
由△Q3QG∽△CBO得:Q3G:QG:Q3Q=1:2:,
∵Q3Q=s=t﹣,
∴Q3G=t﹣1,GQ=3t﹣2,
∴PH=AG=AQ3﹣Q3G=6﹣(t﹣1)=7﹣t,
∴QH=QG﹣AP=3t﹣2﹣t=2t﹣2,
∵∠HPQ=∠CDN,
∴tan∠HPQ=tan∠CDN=,
∴2t﹣2=,t=,
(iii)由图形可知PQ不可能与EF平行,
综上,当PQ与△OEF的一边平行时,AP的长为或.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2019/6/21 10:43:45;用户:15708455779;邮箱:15708455779;学号:24405846
相关试卷
这是一份2020年浙江省温州市中考数学试卷(解析版),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省温州市2022年中考数学试卷解析版,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年浙江省温州市中考数学试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。