|试卷下载
终身会员
搜索
    上传资料 赚现金
    第4讲 函数最值的灵活运用-2022年新高考数学二轮专题突破精练
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      第4讲 函数最值的灵活运用(原卷版).docx
    • 第4讲 函数最值的灵活运用(解析版).docx
    第4讲 函数最值的灵活运用-2022年新高考数学二轮专题突破精练01
    第4讲 函数最值的灵活运用-2022年新高考数学二轮专题突破精练02
    第4讲 函数最值的灵活运用-2022年新高考数学二轮专题突破精练01
    第4讲 函数最值的灵活运用-2022年新高考数学二轮专题突破精练02
    第4讲 函数最值的灵活运用-2022年新高考数学二轮专题突破精练03
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第4讲 函数最值的灵活运用-2022年新高考数学二轮专题突破精练

    展开
    这是一份第4讲 函数最值的灵活运用-2022年新高考数学二轮专题突破精练,文件包含第4讲函数最值的灵活运用原卷版docx、第4讲函数最值的灵活运用解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。

    1.(2021秋•北仑区校级期中)设函数,记表示不超过的最大整数,例如,,.那么函数的值域是
    A.,1,B.,0,C.,D.,
    2.(2021•齐齐哈尔三模)当时,,则的取值范围是
    A.,B.,C.,D.
    3.(2021•西湖区校级模拟)已知,设函数和的零点分别为,和,,则的最小值是
    A.B.C.1D.2
    4.(2021春•桃城区校级月考)已知函数若对任意的恒成立,则实数的取值范围是
    A.,B.,C.,D.,
    5.(2021•临沂一模)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设,用表示不超过的最大整数,则称为高斯函数,也称取整函数,例如:,.已知,则函数的值域为
    A.B.,C.,,D.,0,
    6.(2021秋•蚌山区校级期中)函数值域为
    A.B.,C.D.,
    7.(2021•湖北模拟)已知,则的值域是
    A.,B.,C.,D.,
    8.(2021秋•松山区校级月考)函数的值域为,则实数的取值范围是
    A.,,B.,,C.D.,
    9.(2021秋•金水区校级期中)定义运算为:,如,则函数且的值域为
    A.,B.,C.,D.,
    10.(2021秋•沈阳期末)已知函数的值域为,那么实数的取值范围是
    A.,B.,C.D.,
    11.(2021秋•浙江月考)设为不超过的最大整数,定义集合,,的元素个数为有限集合,,,的“容量”,记为(A),则使函数,,的值域满足(A)的正整数的值为
    A.1000B.1024C.2021D.2021
    12.(2021春•张家口月考)设,用表示不超过的最大整数,已知函数,,则函数的值域为
    A.B.,C.,D.
    13.(2021春•翠屏区校级期中)已知函数的值域为,,则实数的取值范围是
    A.,B.C.D.,
    二.多选题(共2小题)
    14.(2021秋•仓山区校级期中)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,.下列命题是真命题的是
    A.,
    B.,,
    C.函数的值域为,
    D.若,使得,,,,同时成立,则正整数的最大值是5
    15.(2021秋•江苏期末)若在区间,上有恒成立,则称为在区间,上的下界,且下界的最大值称为在区间,上的下确界,简记为.已知是上的奇函数,且,当,时,有.若,,不等式恒成立,下列结论中正确的是
    A.直线是函数图象的一条对称轴
    B.若,则的最大值为4
    C.当,时,
    D.若,则,是不等式恒成立的充分不必要条件
    三.填空题(共14小题)
    16.(2021秋•芦淞区校级期中)若用和表示的最大值和最小值,已知函数,则 .
    17.(2021秋•丽水期中)定义,设函数,,则(1) ;的最大值为 .
    18.(2021•普陀区二模)设是直线上的动点,若,则的最大值为 .
    19.(2021秋•福建期中)若关于的函数的最大值为,最小值为,且,则实数的值为 .
    20.(2021秋•和平区校级期中)函数的最大值为 .
    21.(2021秋•杨浦区校级月考)已知函数的定义域为,对任何实数,,都有,且函数
    的最大值为,最小值为,则值为 .
    22.(2021秋•铜陵期末)函数在,上的最大值为 .
    23.(2021秋•镇江期中)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”.设,用表示不超过的最大整数,则称为高斯函数.例如:,,已知函数,则函数的值域是 .
    24.(2021秋•屯溪区校级月考)若函数的值域为,则实数的取值范围是 .
    25.(2017秋•十堰期末)已知函数.其中表示不超过的最大整数,例如,.
    (1)函数是 函数(奇偶性);
    (2)函数的值域是 .
    26.若函数的值域是,,则函数的值域为 .
    27.(2021春•南山区校级期中)规定:若函数在定义域,上的值域是,,则称该函数为“微微笑”函数.已知函数且为“微微笑”函数,则的取值范围是 .
    28.(2021秋•西城区校级月考)定义函数f(x)=[x[x]],其中[x]表示不超过x的最大整数,例如:[1.3]=1,[﹣1.5]=﹣2,[2]=2.当x∈[0,n)(n∈N*)时,f(x)的值域为An.
    (1)= .
    (2)集合A10中元素的个数为 .
    29.(2021秋•高安市校级期中)函数定义域为,若满足①在内是单调函数;②存在,使在,上的值域为,,,那么就称为“域倍函数”,若函数,是“域2倍函数”,则的取值范围为 .
    四.解答题(共2小题)
    30.(2016•浙江)已知,函数,,其中.
    (Ⅰ)求使得等式成立的的取值范围;
    (Ⅱ)求的最小值(a);
    求在,上的最大值(a).
    31.(2013秋•天元区校级期中)设,若,(1),求证:
    (1)方程有实数根;
    (2);
    (3)设,是方程的两个实数根,则.
    相关试卷

    新高考数学二轮复习考点突破讲义 第1部分 专题突破 专题6 第4讲 母题突破1 范围、最值问题(含解析): 这是一份新高考数学二轮复习考点突破讲义 第1部分 专题突破 专题6 第4讲 母题突破1 范围、最值问题(含解析),共9页。

    新高考数学二轮复习考点突破讲义 第1部分 专题突破 专题1 第4讲 函数的极值、最值(含解析): 这是一份新高考数学二轮复习考点突破讲义 第1部分 专题突破 专题1 第4讲 函数的极值、最值(含解析),共17页。

    2023高考数学二轮专题导数38讲 专题09 函数的最值: 这是一份2023高考数学二轮专题导数38讲 专题09 函数的最值,共12页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        第4讲 函数最值的灵活运用-2022年新高考数学二轮专题突破精练
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map