终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    河北省邢台市“五岳联盟”2022届高三上学期10月联考数学试题 含答案

    立即下载
    加入资料篮
    河北省邢台市“五岳联盟”2022届高三上学期10月联考数学试题 含答案第1页
    河北省邢台市“五岳联盟”2022届高三上学期10月联考数学试题 含答案第2页
    河北省邢台市“五岳联盟”2022届高三上学期10月联考数学试题 含答案第3页
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北省邢台市“五岳联盟”2022届高三上学期10月联考数学试题 含答案

    展开

    这是一份河北省邢台市“五岳联盟”2022届高三上学期10月联考数学试题 含答案,共13页。试卷主要包含了本试卷主要考试内容,函数的最小值为等内容,欢迎下载使用。
    邢台市“五岳联盟”2022届高三上学期10月联考数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。4.本试卷主要考试内容:人教A版必修145一、选择题:本题共8小题,每小题5分,共40.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则   A.  B.C.  D.2.若向量,则   A. B. C. D.3.如图,一个“心形”由两个函数的图象构成,则“心形”上部分的函数解析式可能为(    A. B. C. D.4.的内角ABC的对边分别为abc.已知,则   A. B. C. D.5.在等差数列中,,则的取值范围是(    A. B. C. D.6.将函数的图象向左平移个单位长度后,得到函数的图象,则(    A.为奇函数  B.的图象关于直线对称C.的图象关于点对称 D.上单调递减7.函数的最小值为(    A. B. C.4 D.8.根据《民用建筑工程室内环境污染控制标准》,文化娱乐场所室内甲醛浓度为安全范围.已知某新建文化娱乐场所施工中使用了甲醛喷剂,处于良好的通风环境下时,竣工1周后室内甲醛浓度为6.253周后室内甲醛浓度为1,且室内甲醛浓度(单位:)与竣工后保持良好通风的时间t)(单位:周)近似满足函数关系式,则该文化娱乐场所竣工后的甲醛浓度若要达到安全开放标准,至少需要放置的时间约为(    A.5 B.6 C.7 D.8二、选择题:本题共4小题,每小题5分,共20.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0.9.表示不大于x的最大整数,已知集合,则(    A.  B.C. D.10.下列函数中,定义域与值域相同的是A.  B.C.  D.11.,则(    A.  B.C.  D.12.已知函数的定义域为,当时,,则(    A.B.的图象关于直线对称C.时,D.函数4个零点三、填空题:本题共4小题,每小题5分,共20.把答案填在答题卡的相应位置.13.设向量均为单位向量,且,则___________.14.,则___________.15.写出一个同时具有下列四个性质的函数___________.①定义域为;②单调递增;③;④.16.一张B4纸的厚度为0.093,将其对折后厚度变为,第2次对折后厚度变为,…,第n次对折后厚度变为,则___________,数列的前n项和为____________.(本题第一空2分,第二空3分)四、解答题:本题共6小题,共70.解答应写出必要的文字说明、证明过程或演算步骤.17.10分)如图,在梯形中,.1)用表示2)若,且,求的大小.18.12分)已知函数)的部分图象如图所示.1)求的解析式;2)把的图象上所有点的横坐标伸长到原来的m)倍(纵坐标不变)后,得到函数的图象,若上有最大值,求m的取值范围.19.12分)已知数列的前n项和为,且.数列的前n项积为,且.1)求的通项公式;2)求数列的前n项和.20.12分)已知函数.1)若,求2)当时,讨论函数的零点个数.21.12分)如图,点O在点P的正东方向,现有一个圆形音乐喷泉,点O为喷泉中心,用无人机于点P正上空的点处,测得点O的俯角为,点B的俯角为PAOB四点共线,AB均在圆O上,且.已知圆O的面积为平方米,且.1)求无人机的飞行高度;2)如图,现以AMN三点为顶点在音乐喷泉内建造三条排水暗渠,已知暗渠造价为1000/米,且建造暗渠的预算资金为35000.若要求成等差数列,试问完成三条排水暗渠的建造是否有可能会超预算?说明你的理由.22.12分)已知函数满足.1)试问是否存在,使得函数为奇函数?若存在,求a的值;若不存在,请说明理由.2)若,求m的取值范围.高三上学期10月联考数学参考答案1.B  【解析】本题考查集合的补集,考查数学运算的核心素养.因为,所以,故.2.B  【解析】本题考查平面向量的共线问题,考查数学运算的核心素养.因为,所以,解得.3.C  【解析】本题考查函数的图象与函数的解析式,考查读图能力与逻辑推理的核心素养.由图可知,“心形”关于y轴对称,所以上部分的函数为偶函数,排除BD.又“心形”函数的最大值为1,且,排除A.故选C.4.A  【解析】本题考查正弦、余弦定理的应用,考查数学运算的核心素养.由正弦定理可得,整理得,又由余弦定理可知,所以,解得.5.A  【解析】本题考查等差数列的通项公式,考查逻辑推理与数学运算的核心素养.设公差为d,因为,所以,即,从而.6.D  【解析】本题考查三角函数的图象及其性质,考查逻辑推理的核心素养.由题意可知,则不是奇函数,所以A错误;因为,所以BC均错误.故选D.7.C  【解析】本题考查基本不等式的应用,考查逻辑推理与数学运算的核心素养.因为,当且仅当,即时,等号成立,所以,当且仅当,即时,等号成立.的最小值为4.8.B  【解析】本题考查函数的实际应用,考查数学建模与数学运算的核心素养.由题意可知,,解得.设该文化娱乐场所竣工后放置周后甲醛浓度达到安全开放标准,则,整理得,因为,所以,即.故至少需要放置的时间约为6.9.ABD  【解析】本题考查不等式的解集与集合的运算,考查数学抽象与数学运算的核心素养.因为,所以,所以.因为,所以.因为所以.10.BCD  【解析】本题考查函数的定义域与值域,考查数学抽象与逻辑推理的核心素养.的定义域为,值域为.的定义域和值域均为.的定义域和值域均为.的定义域为,因为,且,所以的值域为,则的值域为.11.BC  【解析】本题考查三角恒等变换,考查数学运算的核心素养.因为,所以,则所以因为,所以所以.12.ACD  【解析】本题考查函数的综合,考查数学抽象与逻辑推理的核心素养.因为,且,所以所以,所以A正确.因为,所以的图象关于点对称,B错误.时,.因为的图象关于点对称,的定义域为,所以所以,故当时,C正确.,得,因为的值域为,所以由,作出的部分图象,如图所示.由图可知,它们有4个交点,故函数4个零点,D正确.13.-7  【解析】本题考查平面向量的数量积,考查数学运算的核心素养.因为,所以,所以.14.9  【解析】本题考查三角恒等变换与函数的解析式,考查数学运算与数学抽象的核心素养.因为,所以,则.15.(答案不唯一,只要满足)即可)  【解析】本题为开放题,考查基本初等函数的性质,考查数学抽象与逻辑推理的核心素养.结合前面三个性质及对数函数的性质可以得出的解析式为),再根据最后一个性质可得.16.  【解析】本题考查数列的综合应用,考查逻辑推理、数学运算的核心素养及化归与转化的数学思想.因为每对折一次,纸张的厚度增加一倍,所以数列是首项为0.186,公比为2的等比数列,所以.因为,所以的前n项和.17.解:(1·····································································1·············································································2. ··············································································42)因为,所以.································································5因为··········································································7,所以······································································8解得··········································································9.  ···········································································1018.解:(1)由图可知·······························································1,解得.  ·······································································3将点代入,得),·······························································4因为,所以····································································5的解析式为.  ···································································62)依题意可得.  ································································8因为上有最大值,且当时,······················································9所以·········································································11,所以,即m的取值范围是.·······················································1219.解:(1)当时,································································1时,.·········································································2经检验,当时,满足,因此.·························································3时,;当时,.··································································5时,满足,因此. ································································62)由(1)知·············································································7·············································································8两式相减得····································································9 ·············································································10············································································11. ···········································································1220.解:(1)∵·································································1···········································································3. ············································································52)当时,···································································6,且上单调递增,·······························································7,得.·······································································8时,方程只有1个解,的零点个数为1···············································9时,方程各有1个解,且这2个解不相等,的零点个数为2······························10时,方程只有1个解,的零点个数为1.···············································11综上,当时,的零点个数为1;当时,的零点个数为2.·····································1221.解:(1)设无人机的飞行高度为h米,圆形音乐喷泉的半径为r米,由题意可知,,则. ································································1,∴········································································2··········································································3,故无人机的飞行高度为12. ·····················································42)∵成等差数列,,则.·········································································5,则.  ·······································································6由正弦定理,可得(米),(米),(米),········································································8(米).·······································································10,∴,∴··········································································11,∴完成三条排水暗渠的建造有可能会超预算.········································1222.解:(1)由,得································································1根据这两个等式,消去.···························································3因此),······································································4故存在,使得函数为奇函数.·························································52)设函数,则.时,;当时,.································································6因为,所以.······································································7因为所以恒成立,···································································8所以恒成立.···································································9设函数),令), ··········································································10当且仅当,即时,等号成立,此时取得最小值·········································11m的取值范围为. ······························································12[]另外,本题中的最小值也可以用求导的方法求得,且的极小值点为. 

    相关试卷

    2023-2024学年河北省邢台市五岳联盟高二上学期期中数学试题含答案:

    这是一份2023-2024学年河北省邢台市五岳联盟高二上学期期中数学试题含答案,共17页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2024届河北省邢台市五岳联盟高三上学期第四次月考数学试题含答案:

    这是一份2024届河北省邢台市五岳联盟高三上学期第四次月考数学试题含答案,共17页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    河北省邢台市“五岳联盟”部分重点学校2022届高三上学期期中考试数学试题含答案:

    这是一份河北省邢台市“五岳联盟”部分重点学校2022届高三上学期期中考试数学试题含答案,文件包含数学答案pdf、数学试题pdf等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map