终身会员
搜索
    上传资料 赚现金

    高中数学北师大版必修四 3.2.2两角和与差的正弦、余弦函数 课件(22张)

    立即下载
    加入资料篮
    高中数学北师大版必修四 3.2.2两角和与差的正弦、余弦函数 课件(22张)第1页
    高中数学北师大版必修四 3.2.2两角和与差的正弦、余弦函数 课件(22张)第2页
    高中数学北师大版必修四 3.2.2两角和与差的正弦、余弦函数 课件(22张)第3页
    高中数学北师大版必修四 3.2.2两角和与差的正弦、余弦函数 课件(22张)第4页
    高中数学北师大版必修四 3.2.2两角和与差的正弦、余弦函数 课件(22张)第5页
    高中数学北师大版必修四 3.2.2两角和与差的正弦、余弦函数 课件(22张)第6页
    高中数学北师大版必修四 3.2.2两角和与差的正弦、余弦函数 课件(22张)第7页
    高中数学北师大版必修四 3.2.2两角和与差的正弦、余弦函数 课件(22张)第8页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学北师大版必修42.2两角和与差的正弦、余弦函数课文配套ppt课件

    展开

    这是一份高中数学北师大版必修42.2两角和与差的正弦、余弦函数课文配套ppt课件,共23页。PPT课件主要包含了课堂练习1,我们又该如何解题呢,课堂练习2,课堂练习3,课后作业等内容,欢迎下载使用。


    学习目标一.掌握两角和的余弦公式及两角和与差的正弦 公式的推导过程.二.能用两角和与差的正弦、余弦公式进行简单 的三角函数的求值、化简、计算等.三.熟悉两角和与差的正弦、余弦公式的灵活运用
    导学问题1  你能由两角差的余弦公式得到两角和的余弦公式吗?
      答:用-β代换β ,即可得 cs(α+β)=cs αcs β-sin αsin β
    归纳1:两角和的余弦公式
    公式:cs(α-β)=cs αcs β+sin αsin β
    记忆口决:“余余正正,符号相反”.
    公式:cs(α+β )=cs αcs β - sin αsin β
    导学问题 2:  你能利用两角差的余弦公式和诱导公式得到两角和的正弦公式吗?
    导学问题 3:  你能由两角和的正弦公式得到两角差的正弦公式吗?
      答:用-β代换β ,即可得 sin(α-β)=sin αcs β-cs αsin β
    归纳2:两角和与差的正弦公式
    简记符号:sα-β , sα+β
    公式:sin(α-β)=sinαcs β - cs αsin β
    记忆口决:“正余余正,符号相同”.
    公式:sin(α + β)=sinαcs β+cs αsin β
    例1 不查表求COS75〫,COS15〫的值。
    解本题时运用和角、差角的技巧,以达到特殊角的和差的目的,然后选择公式,从而使问题得解.
    假如我只将问题变形为:
    假如我只将条件变形为:
    温馨提示: 同学们试找一找已知角与待求角之间的关系:比如
    给值求值问题中,关键是寻求“已知角”与“待求角”之间的关系,再利用两角和与差的正余弦公式进行求解。(1)给值求值问题,解题时要注意角的范围。(2)当“已知角”有两个时,“待求角”一般表示为两个“已知角” 的和或差的形式.(3)当“已知角”有一个时,此时应着眼于“待求角”与“已知角” 的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.
    本题考查了三角函数的性质,而化简函数解析式是解题关键。 三角函数式的化简要遵循“一看角,二看名,三看式子的原则。 看角:尽量向同角转化; 看名:向同名函数转化。 看式子:正用、逆用、变形用三角函数公式。
    课本:第123页A组3、4、5题

    相关课件

    北师大版必修46.2余弦函数的性质教学演示ppt课件:

    这是一份北师大版必修46.2余弦函数的性质教学演示ppt课件,共30页。PPT课件主要包含了性质1,余弦函数的最值,性质2,性质3,余弦函数的周期,最小正周期,余弦函数的奇偶性,性质4,性质5,余弦函数的对称性等内容,欢迎下载使用。

    北师大版必修42.2两角和与差的正弦、余弦函数图文课件ppt:

    这是一份北师大版必修42.2两角和与差的正弦、余弦函数图文课件ppt,共24页。PPT课件主要包含了分析由图1可知,两角差的正弦公式,求下列各式的值等内容,欢迎下载使用。

    北师大版2.2两角和与差的正弦、余弦函数图片课件ppt:

    这是一份北师大版2.2两角和与差的正弦、余弦函数图片课件ppt,共32页。PPT课件主要包含了若是单位向量则,平面向量的数量积,公式应用,两角和与差的正弦公式,两角和的正弦公式,两角差的正弦公式等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map