数学选择性必修 第一册3.1 椭圆课后作业题
展开
这是一份数学选择性必修 第一册3.1 椭圆课后作业题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
3.1.2椭圆的简单几何性质(2) -A基础练一、选择题1.(2020·河北桃城衡水中学期末)已知椭圆,若长轴长为8,离心率为,则此椭圆的标准方程为( )A. B. C. D.【答案】D【解析】因为椭圆长轴长为8,所以,即,又离心率为,所以,解得:,则=,所以椭圆的标准方程为:.2.(2020全国高二课时练)椭圆有一条光学性质:从椭圆一个焦点出发的光线,经过椭圆反射后,一定经过另一个焦点.假设光线沿直线传播且在传播过程中不会衰减,椭圆的方程为,则光线从椭圆一个焦点出发,到首次回到该焦点所经过的路程不可能为( )A.2 B.4 C.6 D.8【答案】B【解析】由题意可得,, ,所以,.①若光线从椭圆一个焦点沿轴方向出发到长轴端点(较近的)再反射,则所经过的路程为,②若光线从椭圆一个焦点沿轴方向出发到长轴端点(较远的)再反射,则所经过的路程为.③若光线从椭圆一个焦点沿非轴方向出发,则所经过的路程为,故选:B3.(2020·金华市曙光学校月考)无论k为何值,直线和曲线交点情况满足( )A.没有公共点 B.一个公共点 C.两个公共点 D.有公共点【答案】D 【解析】因为过定点,且椭圆的上顶点也为,所以当直线的斜率为时,此时直线与椭圆相切,仅有一个公共点,当直线的斜率不为零时,此时直线与椭圆有两个交点,所以无法确定直线与椭圆的公共点是一个还是两个,故选:D.4. (2019·安徽安庆月考)椭圆的左焦点为,若关于直线的对称点是椭圆上的点,则椭圆的离心率为( )A. B. C. D.【答案】A【解析】∵点关于直线的对称点A为,且A在椭圆上,即,∴,∴椭圆C的离心率.5.(多选题)(2020广东濠江高二月考)椭圆的焦距为,则的值为( )A.9 B.23 C. D.【答案】AB【解析】椭圆的焦距为,即得.依题意当焦点在轴上时,则,解得;当焦点在轴上时,则,解得,∴的值为9或23.6.(多选题)(2020全国高二课时练)嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3476公里,对该椭圆下述四个结论正确的是( )A.焦距长约为300公里 B.长轴长约为3988公里 C.两焦点坐标约为 D.离心率约为【答案】AD【解析】设该椭圆的半长轴长为,半焦距长为.依题意可得月球半径约为,,,,,,椭圆的离心率约为,可得结论A、D项正确,B项错误;因为没有给坐标系,焦点坐标不确定,所以C项错误.综上可知,正确的为AD,故选:AD.二、填空题7. (2020·全国课时练习)若直线与椭圆有且只有一个交点,则斜率的值是_______.【答案】【解析】已知直线与椭圆有且只有一个交点,由消去并整理,得,由题意知,,解得:.8.光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出.如图,一个光学装置由有公共焦点,的椭圆与双曲线构成,现一光线从左焦点发出,依次经与反射,又回到了点,历时秒;若将装置中的去掉,此光线从点发出,经两次反射后又回到了点,历时秒;若,则与的离心率之比为______.【答案】【解析】如图,由双曲线定义得:①,由椭圆定义得: ②,②①得:;椭圆双曲线“复合”光学装置中,光线从出发到回到左焦点走过的路程为:对于单椭圆光学装置,光线经过次反射后回到左焦点,路程为;由于两次光速相同,路程比等于时间比,,..9. (2020·福建漳州高二月考)已知,是椭圆的左、右焦点,点在上,线段与轴交于点,为坐标原点,若为的中位线,且,则________.【答案】6【解析】如图所示,因为为的中位线,且,所以,由椭圆定义可得:.10.(2020上海华师大二附中月考)已知点为椭圆的左焦点,点为椭圆上任意一点,点为坐标原点,则的最大值为________【答案】【解析】设点的坐标为,则,则,可得,椭圆的左焦点为,,,则,二次函数在区间上单调递增,所以,.因此,的最大值为.三、解答题11.我国计划发射火星探测器,该探测器的运行轨道是以火星(其半径)的中心为一个焦点的椭圆.如图,已知探测器的近火星点(轨道上离火星表面最近的点)到火星表面的距离为,远火星点(轨道上离火星表面最远的点)到火星表面的距离为.假定探测器由近火星点第一次逆时针运行到与轨道中心的距离为时进行变轨,其中分别为椭圆的长半轴、短半轴的长,求此时探测器与火星表面的距离(精确到).【解析】设所求轨道方程为..于是.所以所求轨道方程为.设变轨时,探测器位于,则.解方程组,得(由题意).所以探测器在变轨时与火星表面的距离为.所以探测器在变轨时与火星表面的距离约为. 12. (2020全国高二课时练习)已知椭圆C:经过点, 是椭圆的两个焦点,,是椭圆上的一个动点. (1)求椭圆的标准方程; (2)若点在第一象限,且,求点的横坐标的取值范围;【解析】(1)由已知得,,∴,,同理,∴,,∴,椭圆标准方程为.(2)设(),则,,∴,∴,即点横坐标取值范围是.
相关试卷
这是一份人教A版 (2019)选择性必修 第一册3.1 椭圆巩固练习,共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)选择性必修 第一册3.1 椭圆精品复习练习题,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份数学3.1 椭圆第1课时同步训练题,共5页。试卷主要包含了已知椭圆C,椭圆等内容,欢迎下载使用。