2022年中考专题复习类型一 新定义型(原卷版)
展开
这是一份2022年中考专题复习类型一 新定义型(原卷版),共11页。
“新定义”型试题主要考查同学们学习新知识的能力,具体而言,就是考查大家的阅读理解能力、数学规则的选择与运用能力、综合运用数学知识分析问题解决问题的能力,有较强的数学抽象,旨在引导、培养大家在平时的数学学习中,能养成自主学习、主动探究的学习方式。
“定义新运算”是指用一个符号和已知运算表达式表示一种新的运算. 解决这类问题的关键是理解新运算规定的规则,明白其中的算理算法. 运算时,要严格按照新定义的运算规则,转化为已学过的运算形式,然后按正确的运算顺序进行计算.
“定义新符号”试题是定义了一个新的数学符号,要求同学们要读懂符号,了解新符号所代表的意义,理解试题对新符号的规定,并将新符号与已学知识联系起来,将它转化成熟悉的知识,而后利用已有的知识经验来解决问题.
【典例1】对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.
(1)求2⊗(-5)的值;
(2)若x⊗(-y)=2,且2y⊗x=-1,求x+y的值.
【典例2】对于实数x,规定表示不小于x的最小整数,例如,,,则
(1)填空:① ;
②若,则x的取值范围是 .
(2)已知x为正整数,且,求x的值.
【典例3】在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”.
任意一对“互换点”能否都在一个反比例函数的图象上?为什么?
M,N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m,n的代数式表示);
在抛物线y=x2+bx+c的图象上有一对“互换点”A,B,其中点A在反比例函数的图象上,直线AB经过点P,求此抛物线的表达式.
【典例4】对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.
(1)计算:F(243),F(617);
(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=EQ \F(F(s),F(t)),当F(s)+F(t)=18时,求k的最大值.
【典例5】我们规定:形如的函数叫做“奇特函数”.当时,“奇特函数”就是反比例函数.
(1) 若矩形的两边长分别是2和3,当这两边长分别增加x和y后,得到的新矩形的面积为8 ,求y与x之间的函数关系式,并判断这个函数是否为“奇特函数”;
(2) 如图,在平面直角坐标系中,点O为原点,矩形OABC的顶点A,C的坐标分别为(9,0)、(0,3).点D是OA的中点,连结OB,CD交于点E,“奇特函数”的图象经过B,E两点.
①求这个“奇特函数”的解析式;
②把反比例函数的图象向右平移6个单位,再向上平移 个单位就可得到①中所得“奇特函数”的图象.过线段BE中点M的一条直线l与这个“奇特函数”的图象交于P,Q两点,若以B、E、P、Q为顶点组成的四边形面积为,请直接写出点P的坐标.
【典例6】定义[,,]为函数=2+的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:
①当m=﹣3时,函数图象的顶点坐标是();
②当m>0时,函数图象截轴所得的线段长度大于 QUOTE \* MERGEFORMAT ;
③当m<0时,函数在> QUOTE \* MERGEFORMAT 时,随的增大而减小;
④当m≠0时,函数图象经过同一个点.
其中正确的结论有___________
【典例7】通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。类似的,可以在等腰三角形中建立边角之间的联系。我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图①在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:
(1)sad60°= .
(2)对于0°
相关试卷
这是一份中考数学重难点01 规律探究与新定义型问题(2类型+10题型),文件包含重难点01规律探究与新定义型问题2类型+10题型原卷版docx、重难点01规律探究与新定义型问题2类型+10题型解析版docx等2份试卷配套教学资源,其中试卷共80页, 欢迎下载使用。
这是一份【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题01 新定义型问题(原卷版+解析版),文件包含专题01新定义型问题解析版docx、专题01新定义型问题原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
这是一份2022年中考数学专题复习类型三 新解题方法型(原卷版),共4页。