所属成套资源:2022年中考数学必考的十五种类型大题夺分技巧再训练
专题10 新定义型问题-2022年中考数学必考的十五种类型大题夺分技巧再训练
展开
这是一份专题10 新定义型问题-2022年中考数学必考的十五种类型大题夺分技巧再训练,文件包含专题10新定义型问题解析版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx、专题10新定义型问题原卷版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
专题10 新定义型问题1.定义一种新运算“⊕”:a⊕b = 2a-b,比如1⊕(-3) =2×1-(-3)=5(1)求(-2)⊕3的值:(2)若3⊕x = (x + 1)⊕5,求x的值;(3)若x⊕1 = 1⊕y,求代数式4x + 2y + 1的值.2.对数运算是高中常用的一种重要运算,它的定义为:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=logaN,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN.当a>0,且a≠1,M>0,N>0时,loga(M•N)=logaM+logaN.(1)解方程:logx4=2;(2)求值:log48;(3)计算:(lg2)2+lg2•1g5+1g5﹣20183.阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a1,排在第二位的数称为第二项,记为a2,依此类推,排在第n位的数称为第n项,记为an.所以,数列的一般形式可以写成:a1,a2,a3,…,an,….一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示.如:数列1,3,5,7,…为等差数列,其中a1=1,a2=3,公差为d=2.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d为 ,第5项是 .(2)如果一个数列a1,a2,a3,…,an…,是等差数列,且公差为d,那么根据定义可得到:a2﹣a1=d,a3﹣a2=d,a4﹣a3=d,…,an﹣an﹣1=d,….所以a2=a1+da3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=(a1+2d)+d=a1+3d,……由此,请你填空完成等差数列的通项公式:an=a1+( )d.(3)﹣4041是不是等差数列﹣5,﹣7,﹣9…的项?如果是,是第几项?4.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.5.在平面直角坐标系中,给出如下定义:若点在图形上,点在图形上,如果两点间的距离有最小值,那么称这个最小值为图形的“近距离”,记为.特别地,当图形与图形有公共点时,.已知A(-4,0),B(0,4),C(4,0),D(0,-4),(1)d(点A,点C)=________,d(点A,线段BD)=________;(2)⊙O半径为r,① 当r = 1时,求 ⊙O与正方形ABCD的“近距离”d(⊙O,正方形ABCD);② 若d(⊙O,正方形ABCD)=1,则r =___________.(3)M 为x轴上一点,⊙M的半径为1,⊙M与正方形ABCD的“近距离”d(⊙M,正方形ABCD)<1,请直接写出圆心M的横坐标 m的取值范围.6.如果实数a,b满足的形式,那么a和b就是“智慧数”,用表示.如:由于,所以是“智慧数”.(1)下列是“智慧数”的是 (填序号);① 和,② 和,③ 和.(2)如果是“智慧数”,那么“☆”的值为 ;(3)如果是“智慧数”,①y与x之间的关系式为 ;②当x>0时,y的取值范围是 ;③在②的条件下,y随x的增大而 (填“增大”,“减小”或“不变”).7.把(其中a、b是常数,x、y是未知数)这样的方程称为“雅系二元一次方程”当时,“雅系二元一次方程”中x的值称为“雅系二元一次方程”的“完美值”.例如:当时,雅系二元一次方程”化为,其“完美值”为.(1)求“雅系二元一次方程”的“完美值”;(2)是“雅系二元一次方程”的“完美值”,求m的值;(3)“雅系二元一次方程”(,是常数)存在“完美值”吗?若存在,请求出其“完美值”,若不存在,请说明理由.8.如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程x2+x=0的两个根是x1=0,x2=﹣1,则方程x2+x=0是“邻根方程”.(1)通过计算,判断方程2x2﹣2x+1=0是否是“邻根方程”?(2)已知关于x的方程x2﹣(m﹣1)x﹣m=0(m是常数)是“邻根方程”,求m的值;(3)若关于x的方程ax2+bx+1=0(a,b是常数,a>0)是“邻根方程”,令t=12a﹣b2,试求t的最大值.9.阅读理解:给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的一半,则这个矩形是给定矩形的“减半”矩形.如图,矩形是矩形的“减半”矩形.请你解决下列问题:(1)当矩形的长和宽分别为,时,它是否存在“减半”矩形?请作出判断,并说明理由.(2)边长为的正方形存在“减半”正方形吗?如果存在,求出“减半”正方形的边长;如果不存在,请说明理由.10.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若ax=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=logaN,比如指数式24=16可以转化为对数式4=log216,对数式2=log525,可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:loga(M•N)=logaM+logaN(a>0,a≠1,M>0,N>0),理由如下:设logaM=m,logaN=n,则M=am,N=an,∴M•N=am•an=am+n,由对数的定义得m+n=loga(M•N)又∵m+n=logaM+logaN∴loga(M•N)=logaM+logaN根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式 ;(2)求证:loga=logaM﹣logaN(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log69+log68﹣log62= .11.阅读下面的材料:如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.例题:证明函数f(x)=(x>0)是减函数.证明:设0<x1<x2,f(x1)﹣f(x2)=﹣==.∵0<x1<x2,∴x2﹣x1>0,x1x2>0.∴>0.即f(x1)﹣f(x2)>0.∴f(x1)>f(x2).∴函数f(x)═(x>0)是减函数.根据以上材料,解答下面的问题:已知函数f(x)=+x(x<0),f(﹣1)=+(﹣1)=0,f(﹣2)=+(﹣2)=﹣(1)计算:f(﹣3)= ,f(﹣4)= ;(2)猜想:函数f(x)=+x(x<0)是 函数(填“增”或“减”);(3)请仿照例题证明你的猜想.12.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2,22,﹣22}= ; ②min{sin30°,cos60°,tan45°}= ;(2)若M{﹣2x,x2,3}=2,求x的值;(3)若min{3﹣2x,1+3x,﹣5}=﹣5,求x的取值范围.【阅读】数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.【理解】(1)如图1,两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;(2)如图2,n行n列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:n2= ;【运用】(3)n边形有n个顶点,在它的内部再画m个点,以(m+n)个点为顶点,把n边形剪成若干个三角形,设最多可以剪得y个这样的三角形.当n=3,m=3时,如图3,最多可以剪得7个这样的三角形,所以y=7.①当n=4,m=2时,如图4,y= ;当n=5,m= 时,y=9;②对于一般的情形,在n边形内画m个点,通过归纳猜想,可得y= (用含m、n的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.13.定义:如果一个三角形一边上的中线与这条边上的高线之比为,那么称这个三角形为“神奇三角形”.(1)已知:Rt△ABC中,∠ACB=90°.①当AC=BC时,求证:△ABC是“神奇三角形”;②当AC≠BC时,且△ABC是“神奇三角形”,求tanA的值;(2)如图,在△ABC中,AB=AC,CD是AB边上的中线,若∠DCB=45°,求证:△ABC是“神奇三角形”.
相关试卷
这是一份专题08 数据描述与分析问题 -2022年中考数学必考的十五种类型大题夺分技巧再训练,文件包含专题08数据描述与分析问题解析版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx、专题08数据描述与分析问题原卷版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份专题13数字图形规律探索问题 -2022年中考数学必考的十五种类型大题夺分技巧再训练,文件包含专题13数字图形规律探索问题解析版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx、专题13数字图形规律探索问题原卷版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
这是一份专题15图形变换问题 -2022年中考数学必考的十五种类型大题夺分技巧再训练,文件包含专题15图形变换问题解析版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx、专题15图形变换问题原卷版-2022年中考数学必考的十五种类型大题夺分技巧再训练docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。