![湖北省黄冈市黄梅县2020-2021学年八年级下学期期末数学试题(word版 含答案)第1页](http://m.enxinlong.com/img-preview/2/3/12145587/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖北省黄冈市黄梅县2020-2021学年八年级下学期期末数学试题(word版 含答案)第2页](http://m.enxinlong.com/img-preview/2/3/12145587/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖北省黄冈市黄梅县2020-2021学年八年级下学期期末数学试题(word版 含答案)第3页](http://m.enxinlong.com/img-preview/2/3/12145587/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
湖北省黄冈市黄梅县2020-2021学年八年级下学期期末数学试题(word版 含答案)
展开
这是一份湖北省黄冈市黄梅县2020-2021学年八年级下学期期末数学试题(word版 含答案),共25页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
湖北省黄冈市黄梅县2020-2021学年八年级下学期期末数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若二次根式有意义,则的取值范围是( )
A. B. C. D.
2.下列各组数中能作为直角三角形的三边长的是( )
A.1,2,3 B.3,4,5 C.4,5,6 D.7,8,9
3.下列给出的条件中,不能判断四边形ABCD是平行四边形的是( )
A.AB∥CD,AD=BC B.∠A=∠C,∠B=∠D
C.AB∥CD,AD∥BC D.AB=CD,AD=BC
4.在某次数学测验中,某小组8名同学的成绩如下:81,73,81,81,85,83,87,89,则这组数据的中位数、众数分别为( ).
A.80,81 B.81,89 C.82,81 D.73,81
5.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于( )
A.2cm B.4cm C.6cm D.8cm
6.若一次函数y=x+4的图象上有两点A(﹣,y1)、B(1,y2),则下列说法正确的是( )
A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y2
7.若=﹣a,则a的取值范围是( )
A.﹣3≤a≤0 B.a≤0 C.a<0 D.a≥﹣3
8.对于一次函数,下列叙述正确的是( )
A.当时,函数图象经过第一、二、三象限
B.当时,随的增大而增大
C.当时,函数图象一定不经过第二象限
D.函数图象一定经过点
二、填空题
9.计算:_________.
10.已知,则代数式的值为 __________.
11.评定学生的学科期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,已知小明的数学考试85分,作业90分,课堂参与80分,则他的数学期末成绩为____________分.
12.直线:与直线:在同一平面直角坐标系中的图像如图所示,则关于的不等式的解集为____________.
13.在平面直角坐标系中,若点的坐标是,点的坐标是,在轴上求一点,使得最短,则点的坐标为_____.
14.如图,折叠矩形纸片ABCD,先折出折痕BD,再折叠使AD边与对角线BD重合,得折痕DG,若AB=4,BC=3,则AG的长是_____.
15.如图,已知,,,当时,______.
16.一个有进水管与出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的若干分内既进水又出水,之后只出水不进水.每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图.则a=__________.
三、解答题
17.计算:
(1);
(2).
18.已知:如图四边形ABCD是平行四边形,P、Q是直线AC上的点,且AP=CQ.求证:四边形PBQD是平行四边形.
19.为了在甲、乙两名学生中选拔一人参加全国数学竞赛,在相同条件下,对他们进行了10次测验,成绩如下:(单位:分)
甲成绩(分)
76
84
90
86
81
87
86
82
85
83
乙成绩(分)
82
84
85
89
79
80
91
89
74
79
回答下列问题:
(1)若甲学生成绩的平均数是,乙学生成绩的平均数是,则与的大小关系是:_____________.
(2)经计算知:,,这表明___________________(用简明的文字语言表述).
(3)若测验分数在84分(含84分)以上为优秀,请分别求出甲、乙的优秀率.
20.已知与成正比,当时,.
(1)求与之间的函数关系式;
(2)当时,求函数的值;
(3)将所得函数的图像向右平移个单位,使它过点,请求出的值.
21.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.
(1)求证:四边形ABCD是菱形;
(2)若DC=2,AC=4,求OE的长.
22.已知:如图,在中,,点是中点,于点,求证:.
23.我们给出如下定义:顺次连接任意一个四边形各边中所得的四边形叫中点四边形.
(1)如图1,在四边形中,点,,,分别为边,,,的中点,中点四边形是_______________.
(2)如图2,点P是四边形内一点,且满足,,,点,,,分别为边,,,的中点.猜想中点四边形的形状,并证明你的猜想.
(3)若改变(2)中的条件,使,其他条件不变,直接写出中点四边形EFGH的形状(不必证明).
24.某市,两个蔬菜基地得知黄岗,两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知蔬菜基地有蔬菜200t,蔬菜基地有蔬菜300t,现将这些蔬菜全部调运,两个灾区安置点,从地运往,两处的费用分别为每吨20元和25元,从地运往,两处的费用分别为每吨15元和18元.设从地运往处的蔬菜为吨.
(1)请填写下表,用含的代数式填空,结果要化简:
总计/
_________
_________
200
_________
300
总计/
240
260
500
(2)设,两个蔬菜基地的总运费为元,求出与之间的函数关系式,并求总运费最小的调运方案;
(3)经过抢修,从地到处的路况得到进一步改善,缩短了运输时间,运费每吨减少元,其余线路的运费不变,试讨论总运费最小的调动方案.
25.已知:如图,直线:分别交,轴于、两点.以线段为直角边在第一象限内作等腰直角,;直线经过点与点,且与直线在轴下方相交于点.
(1)请求出直线的函数关系式;
(2)求出的面积;
(3)在直线上不同于点,是否存在一点,使得与面积相等,如若存在,请求出点的坐标;如若不存在,请说明理由;
(4)在坐标轴上是否存在点,使的面积与四边形的面积相等?若存在,直接写出点的坐标;若不存在,请说明理由.
参考答案
1.B
【分析】
根据二次根式有意义的条件列式求解即可.
【详解】
解:∵二次根式有意义
∴x﹣3≥0,即:x≥3.
故选:B.
【点睛】
本题主要考查了二次根式有意义的条件,二次根式有意义的条件是被开方数大于等于零.
2.B
【分析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
解:A、因为12+22≠32,故不是勾股数;故此选项错误;
B、因为32+42=52,故是勾股数.故此选项正确;
C、因为42+52≠62,故不是勾股数;故此选项错误;
D、因为72+82≠92,故不是勾股数.故此选项错误;
故选B.
3.A
【分析】
直接根据平行四边形的判定定理判断即可.
【详解】
平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.∴C能判断;
平行四边形判定定理1,两组对角分别相等的四边形是平行四边形;∴B能判断;
平行四边形判定定理2,两组对边分别相等的四边形是平行四边形;∴D能判定;
平行四边形判定定理3,对角线互相平分的四边形是平行四边形;
平行四边形判定定理4,一组对边平行相等的四边形是平行四边形;
故选A.
【点睛】
此题是平行四边形的判定,解本题的关键是掌握和灵活运用平行四边形的5个判断方法.
4.C
【详解】
试题解析:将这组数从小到大排列为73,81,81,81,83,85,87,89,观察数据可知,最中间的那两个数为81和83,则中位数为82,而81出现的次数最多,所以众数是81.故本题应选C.
5.A
【分析】
由平行四边形对边平行根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,在同一三角形中,根据等角对等边得CE=CD,则BE可求解.
【详解】
根据平行四边形的性质得AD∥BC,
∴∠EDA=∠DEC,
又∵DE平分∠ADC,
∴∠EDC=∠EDA,
∴∠EDC=∠DEC,
∴CD=CE=AB=6,
即BE=BC﹣EC=8﹣6=2.
故选:A.
【点睛】
本题考查了平行四边形的性质的应用,及等腰三角形的判定,属于基础题.
6.C
【详解】
试题分析:∵k=1>0,∴y随x的增大而增大,∵-
相关试卷
这是一份2021-2022学年湖北省黄冈市黄梅县八年级下学期期中数学试题及答案,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省黄冈市黄梅县2022-2023学年八年级下学期期末数学试题(含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省黄冈市黄梅县2022-2023学年八年级下学期期末考试数学试题,共4页。