|课件下载
终身会员
搜索
    上传资料 赚现金
    高考大题增分专项四 高考中的立体几何课件PPT
    立即下载
    加入资料篮
    高考大题增分专项四 高考中的立体几何课件PPT01
    高考大题增分专项四 高考中的立体几何课件PPT02
    高考大题增分专项四 高考中的立体几何课件PPT03
    高考大题增分专项四 高考中的立体几何课件PPT04
    高考大题增分专项四 高考中的立体几何课件PPT05
    高考大题增分专项四 高考中的立体几何课件PPT06
    高考大题增分专项四 高考中的立体几何课件PPT07
    高考大题增分专项四 高考中的立体几何课件PPT08
    还剩34页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考大题增分专项四 高考中的立体几何课件PPT

    展开
    这是一份高考大题增分专项四 高考中的立体几何课件PPT,共42页。PPT课件主要包含了-2-,-3-,题型一,题型二,题型三,题型四,-4-,-5-,-6-,-7-等内容,欢迎下载使用。

    从近五年的高考试题来看,立体几何是历年高考的重点,约占整个试卷的15%,通常以一大两小的模式命题,以中、低档难度为主.三视图、简单几何体的表面积与体积、点、线、面位置关系的判定与证明以及空间角的计算是考查的重点内容,前者多以客观题的形式命题,后者主要以解答题的形式加以考查.着重考查推理论证能力和空间想象能力,而且对数学运算的要求有加强的趋势.转化与化归思想贯穿整个立体几何的始终.
    1.在解决线线平行、线面平行问题,若题目中已出现了中点,则可考虑在图形中取中点,构成中位线进行证明.2.要证线面平行,先在平面内找一条直线与已知直线平行,再利用线面平行的判定定理证明.3.要证线线平行,可考虑公理4或转化为线面平行.4.要证线面垂直可转化为证明线线垂直,应用线面垂直的判定定理与性质定理进行转化.5.用向量方法证明线线、线面平行或垂直的方法:设直线l1,l2的方向向量分别为a,b,平面α,β的法向量分别为e1,e2,A,B,C分别为平面α内相异三点(其中,l1与l2不重合,α与β不重合,l1不在α内),则
    (1)l1∥l2⇔a∥b⇔存在实数λ,使b=λa(a≠0);l1⊥l2⇔a⊥b⇔a·b=0.(2)l1⊥α⇔a∥e1⇔存在实数λ,使e1=λa(a≠0);l1∥α⇔a·e1=0⇔存在非零实数λ1,λ2,使
    例1在如图所示的几何体中,四边形ABCD是正方形,PA⊥平面ABCD,E,F分别是线段AD,PB的中点,PA=AB=1.求证:EF∥平面DCP.
    证明:(方法一)取PC的中点M,连接DM,MF.
    ∴MF∥DE,MF=DE,∴四边形DEFM为平行四边形,∴EF∥DM.∵EF⊄平面DCP,DM⊂平面DCP,∴EF∥平面DCP.
    (方法二)取PA的中点N,连接NE,NF.∵E是AD的中点,N是PA的中点,∴NE∥DP.又F是PB的中点,N是PA的中点,∴NF∥AB.∵AB∥CD,∴NF∥CD.∵NE∩NF=N,NE⊂平面NEF,NF⊂平面NEF,DP⊂平面PCD,CD⊂平面PCD,∴平面NEF∥平面PCD.∵EF⊂平面NEF,∴EF∥平面DCP.
    (方法三)取BC的中点G,连接EG,FG.在正方形ABCD中,∵E是AD的中点,G是BC的中点,∴GE∥CD.又F是PB的中点,G是BC的中点,∴GF∥PC.又PC∩CD=C,GE⊂平面GEF,GF⊂平面GEF,PC⊂平面PCD,CD⊂平面PCD,∴平面GEF∥平面PCD.∵EF⊂平面GEF,∴EF∥平面DCP.
    (方法四)∵PA⊥平面ABCD,且四边形ABCD是正方形,∴AD,AB,AP两两垂直,∴以A为原点,AP,AB,AD所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,
    对点训练1如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EF∥AC, AB= ,CE=EF=1.求证:(1)AF∥平面BDE;(2)CF⊥平面BDE.
    证明:(1)设AC与BD交于点G,∵EF∥AG,EF=1,AG= AC=1,∴四边形AGEF为平行四边形,∴AF∥EG.∵EG⊂平面BDE,AF⊄平面BDE,∴AF∥平面BDE.(2)连接FG,∵EF∥CG,EF=CG=1,CE=1,∴平行四边形CEFG为菱形,∴CF⊥EG.∵四边形ABCD为正方形,∴BD⊥AC.又平面ACEF⊥平面ABCD,平面ACEF∩平面ABCD=AC,∴BD⊥平面ACEF,∴CF⊥BD.又BD∩EG=G,∴CF⊥平面BDE.
    1.判定面面平行的四个方法:(1)利用定义:判断两个平面没有公共点.(2)利用面面平行的判定定理.(3)利用垂直于同一条直线的两个平面平行.(4)利用平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行.2.面面垂直的证明方法:(1)用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线.(2)用面面垂直的定义,即证明两个平面所成的二面角是直二面角.
    例2如图,CC1⊥平面ABC,平面ABB1A1⊥平面ABC,四边形ABB1A1为正方形,∠ABC=60°,BC=CC1= AB=2,点E在棱BB1上.(1)若F为A1B1的中点,E为BB1的中点,证明:平面EC1F∥平面A1BC;
    (1)证明:∵平面ABB1A1⊥平面ABC,BB1⊥BA,平面ABB1A1∩平面ABC=AB,∴BB1⊥平面ABC.又CC1⊥平面ABC,∴BB1∥CC1.
    ∴四边形CC1EB为平行四边形,∴C1E∥BC.又BC⊂平面A1BC,C1E⊄平面A1BC,∴C1E∥平面A1BC.∵BE=EB1,A1F=FB1,∴EF∥A1B.又A1B⊂平面A1BC,EF⊄平面A1BC,∴EF∥平面A1BC.又C1E∩EF=E,C1E⊂平面EC1F,FE⊂平面EC1F,∴平面EC1F∥平面A1BC.
    (2)解:在△ABC中,由余弦定理,得AC2=AB2+BC2-2AB·BCcs 60°=12,∴AB2=AC2+BC2,∴△ABC为直角三角形,且∠ACB=90°,∴AC⊥BC.由CC1⊥平面ABC,得CC1⊥AC,CC1⊥BC,∴CA,CB,CC1两两垂直.
    化简得12λ2-6λ+5=0.由于Δ<0,因此此方程无解,所以不存在实数λ,使得平面A1EC1⊥平面A1EC.
    对点训练2如图①,已知在矩形ABCD中,AB=2AD=2,O为CD的中点,沿AO将三角形AOD折起,使DB= ,如图②.(1)求证:平面AOD⊥平面ABCO;(2)求直线BC与平面ABD所成角的正弦值.
    (1)证明 在矩形ABCD中,AB=2AD=2,O为CD的中点,∴△AOD,△BOC为等腰直角三角形,∴∠AOB=90°,即OB⊥OA.取AO中点H,连接DH,BH,
    又DB2=3,∴DH2+BH2=DB2,∴DH⊥BH.又DH⊥OA,OA∩BH=H,∴DH⊥平面ABCO.而DH⊂平面AOD,∴平面AOD⊥平面ABCO.
    (2)解 分别以OA,OB所在直线为x轴,y轴,O为坐标原点,建立如图所示的空间直角坐标系,
    即x=y,x=z,令x=1,则y=z=1,n=(1,1,1).设α为直线BC与平面ABD所成的角,
    1.对命题条件的探索有三种途径:(1)先猜后证,即先观察与尝试给出探索条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)将几何问题转化为代数问题,探索出命题成立的条件.2.对命题结论的探索方法.从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,再寻找与条件相容或者矛盾的结论.
    例3已知正三角形ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.(1)试判断直线AB与平面DEF的位置关系,并说明理由.(2)求二面角E-DF-C的余弦值.(3)在线段BC上是否存在一点P,使AP⊥DE?若存在,求出 的值;若不存在,请说明理由.
    解:(1)在△ABC中,由E,F分别是AC,BC的中点,得EF∥AB,又AB⊄平面DEF,EF⊂平面DEF,所以AB∥平面DEF.(2)以点D为坐标原点,以直线DB,DC,DA分别为x轴、y轴、z轴,建立空间直角坐标系D-xyz,
    对点训练3如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直.AB∥CD,AB⊥BC,AB=2CD=2BC,EA⊥EB.(1)求证:AB⊥DE.(2)求直线EC与平面ABE所成角的正弦值.(3)线段EA上是否存在点F,使EC∥平面FBD?若存在,求出 ;若不存在,请说明理由.
    (1)证明:取AB的中点O,连接EO,DO.因为EB=EA,所以EO⊥AB.因为四边形ABCD为直角梯形,AB=2CD=2BC,AB⊥BC,所以四边形OBCD为正方形,所以AB⊥OD.因为EO∩DO=O,所以AB⊥平面EOD,所以AB⊥ED.
    (2)解:因为平面ABE⊥平面ABCD,且EO⊥AB,所以EO⊥平面ABCD,所以EO⊥OD.故OB,OD,OE两两垂直,建立如图所示的空间直角坐标系O-xyz.因为三角形EAB为等腰直角三角形,所以OA=OB=OD=OE,设OB=1,所以O(0,0,0),A(-1,0,0),B(1,0,0),C(1,1,0),D(0,1,0),E(0,0,1).
    例4如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=1,直线PD与底面ABCD所成的角等于30°,PF=FB,E∈BC,EF∥平面PAC.(2)求二面角P-DE-A的余弦值;(3)求直线PC与平面PDE所成角的正弦值.
    解:(1)∵平面PBC∩平面PAC=PC,EF⊂平面PBC,EF∥平面PAC,∴EF∥PC.又F是PB的中点,
    (2)以A为坐标原点,分别以AD,AB,AP所在直线为x轴、y轴、z轴建立空间直角坐标系,∵PA=AB=1,PA⊥底面ABCD,∴直线PD与底面ABCD所成的角为∠PDA=30°,
    对点训练4如图,在四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D-AE-C的余弦值.
    (1)证明:由题设可得,△ABD≌△CBD,从而AD=DC.又△ACD是直角三角形,所以∠ADC=90°.取AC的中点O,连接DO,BO,则DO⊥AC,DO=AO.又由于△ABC是正三角形,故BO⊥AC.所以∠DOB为二面角D-AC-B的平面角.在Rt△AOB中,BO2+AO2=AB2,又AB=BD,所以BO2+DO2=BO2+AO2=AB2=BD2,故∠DOB=90°.所以平面ACD⊥平面ABC.
    相关课件

    广西专用高考数学一轮复习高考大题增分专项四高考中的立体几何课件新人教A版文: 这是一份广西专用高考数学一轮复习高考大题增分专项四高考中的立体几何课件新人教A版文,共26页。PPT课件主要包含了-2-,-3-,题型一,题型二,题型三,-4-,-5-,-6-,-7-,-8-等内容,欢迎下载使用。

    高考大题增分专项一 (题型一) 课件 共21张PPT: 这是一份高考大题增分专项一 (题型一) 课件 共21张PPT,共21页。PPT课件主要包含了-2-,-3-,题型一,题型二,题型三,策略一,策略二,策略三,-4-,-5-等内容,欢迎下载使用。

    广西专用高考数学一轮复习高考大题增分专项四高考中的立体几何课件新人教A版理: 这是一份广西专用高考数学一轮复习高考大题增分专项四高考中的立体几何课件新人教A版理,共41页。PPT课件主要包含了-2-,-3-,题型一,题型二,题型三,题型四,-4-,-5-,-6-,-7-等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map