课时跟踪检测(二十三) 平面
展开1.下列空间图形画法错误的是( )
解析:选D 遮挡部分应画成虚线.故D错,故选D.
2.已知直线m⊂平面α,P∉m,Q∈m,则( )
A.P∉α,Q∈α B.P∈α,Q∉α
C.P∉α,Q∉α D.Q∈α
解析:选D 因为Q∈m,m⊂α,所以Q∈α. 因为P∉m,所以有可能P∈α,也可能有P∉α.故选D.
3.下列命题中正确命题的个数是( )
①三角形是平面图形;
②四边形是平面图形;
③四边相等的四边形是平面图形;
④圆是平面图形.
A.1 B.2
C.3 D.4
解析:选B 根据基本事实3可知①④正确,②③错误.故选B.
4.两个平面若有三个公共点,则这两个平面( )
A.相交 B.重合
C.相交或重合 D.以上都不对
解析:选C 若三点在同一条直线上,则这两个平面相交或重合,若三点不共线,则这两个平面重合.故选C.
5.[多选]已知α,β为平面,A,B,M,N为点,a为直线,下列推理正确的是( )
A.A∈a,A∈β,B∈a,B∈β⇒a⊂β
B.M∈α,M∈β,N∈α,N∈β⇒α∩β=MN
C.A∈α,A∈β⇒α∩β=A
D.A,B,M∈α,A,B,M∈β,且A,B,M不共线⇒α,β重合
解析:选ABD 对于A,由基本事实2可知,a⊂β,A正确;对于B,由M∈α,M∈β,N∈α,N∈β,由基本事实2可知,直线MN⊂α.同理MN⊂β,∴α∩β=MN,B正确;对于C,∵A∈α,A∈β,∴A∈(α∩β).由基本事实可知α∩β为经过A的一条直线而不是点A.故α∩β=A的写法错误;对于D,∵A,B,M不共线,由基本事实1可知,过A,B,M有且只有一个平面,故α,β重合.故选A、B、D.
6.空间中有五个点,其中有四个点在同一平面内,但没有任何三点共线,这样的五个点确定____个平面.
解析:可以想象四棱锥的5个顶点,它们总共确定7个平面.
答案:7
7.如图所示,用符号语言表示以下图形中点、直线、平面之间的位置关系:
①点A,B在直线a上________;
②直线a在平面α内________;
③点D在直线b上,点C在平面α内________.
解析:①②属于多面体;根据点、线、面位置关系及其表示方法可知:①A∈a,B∈a,②a⊂α,③D∈b,C∈α.
答案:①A∈a,B∈a ②a⊂α ③D∈b,C∈α
8.在长方体ABCDA1B1C1D1的所有棱中,既与AB共面,又与CC1共面的棱有____条.
解析:由题图可知,既与AB共面又与CC1共面的棱有CD,BC,BB1,AA1,C1D1共5条.
答案:5
9.如图,在正方体ABCDA1B1C1D1中,判断下列命题是否正确,并说明理由.
(1)由点A,O,C可以确定一个平面;
(2)由点A,C1,B1确定的平面为平面ADC1B1.
解:(1)不正确.因为点A,O,C在同一条直线上,故不能确定一个平面.
(2)正确.因为点A,B1,C1不共线,所以可确定一个平面.又因为AD∥B1C1,所以点D∈平面AB1C1.所以由点A,C1,B1确定的平面为平面ADC1B1.
10.按照给出的要求,完成图中两个相交平面的作图,图中所给线段AB分别是两个平面的交线.
解:以AB为其中一边,分别画出表示平面的平行四边形.如图.
B级——面向全国卷高考高分练
1.如果直线a⊂平面α,直线b⊂平面α,M∈a,N∈b,M∈l,N∈l,则( )
A.l⊂α B.l⊄α
C.l∩α=M D.l∩α=N
解析:选A ∵M∈a,a⊂α,∴M∈α,同理,N∈α,又M∈l,N∈l,故l⊂α.故选A.
2.能确定一个平面的条件是( )
A.空间三个点 B.一个点和一条直线
C.无数个点 D.两条相交直线
解析:选D 不在同一条直线上的三个点可确定一个平面,A、B、C条件不能保证有不在同一条直线上的三个点,故不正确.故选D.
3.已知空间中有A,B,C,D,E五个点,如果点A,B,C,D在同一个平面内,点B,C,D,E在同一个平面内,那么这五个点( )
A.共面 B.不一定共面
C.不共面 D.以上都不对
解析:选B 若B,C,D共线,则这五个点不一定共面;若B,C,D不共线,则这五个点一定共面.故选B.
4.如图,已知平面α∩平面β=l,P∈β且P∉l,M∈α,N∈α,又MN∩l=R,M,N,P三点确定的平面记为γ,则β∩γ是( )
A.直线MP B.直线NP
C.直线PR D.直线MR
解析:选C 因为MN⊂γ,R∈MN,所以R∈γ.又α∩β=l,MN∩l=R,所以R∈β.又P∈β,P∈γ,所以P,R均为平面γ与β的公共点,所以β∩γ=PR.故选C.
5.已知平面α与平面β、平面γ都相交,则这三个平面可能的交线有________条.
解析:当β与γ相交时,若α过β与γ的交线,有1条交线;若α不过β与γ的交线,有3条交线;当β与γ平行时,有2条交线.
答案:1或2或3
6.若直线l与平面α相交于点O,A,B∈l,C,D∈α,且AC∥BD,则O,C,D三点的位置关系是________.
解析:∵AC∥BD,∴AC与BD确定一个平面,记作平面β,则α∩β=直线CD.
∵l∩α=O,∴O∈α. 又∵O∈AB⊂β,∴O∈直线CD,
∴O,C,D三点共线.
答案:共线
7.如图,在四面体ABCD中作截面PQR,若PQ,CB的延长线交于点M,RQ,DB的延长线交于点N,RP,DC的延长线交于点K.
求证:M,N,K三点共线.
证明:∵M∈PQ,直线PQ⊂平面PQR,
M∈BC,直线BC⊂平面BCD,
∴M是平面PQR与平面BCD的一个公共点
∴M在平面PQR与平面BCD的交线上.
同理可证,N,K也在平面PQR与平面BCD的交线上.
∴M,N,K三点共线.
C级——拓展探索性题目应用练
如图所示,今有一正方体木料ABCDA1B1C1D1,其中M,N分别是AB,CB的中点,要过D1,M,N三点将木料锯开,请你帮助木工师傅想办法,怎样画线才能顺利完成?
解:作法如下:
(1)连接MN并延长交DC的延长线于F,连接D1F交CC1于Q,连接QN;
(2)延长NM交DA的延长线于E,连接D1E交AA1于P,连接MP;
(3)依次在正方体各个面上画线D1P,PM,MN,NQ,QD1,即为木工师傅所要画的线.
高中数学人教A版 (2019)必修 第一册4.2 指数函数随堂练习题: 这是一份高中数学人教A版 (2019)必修 第一册4.2 指数函数随堂练习题,共4页。
高中人教A版 (2019)8.3 简单几何体的表面积与体积课时练习: 这是一份高中人教A版 (2019)8.3 简单几何体的表面积与体积课时练习,共5页。
人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直练习: 这是一份人教A版 (2019)必修 第二册8.6 空间直线、平面的垂直练习,共5页。