![2021年重庆第十八中学高一上 立体几何初步单元测试卷(含答案与解析)第1页](http://m.enxinlong.com/img-preview/3/3/12078006/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021年重庆第十八中学高一上 立体几何初步单元测试卷(含答案与解析)第2页](http://m.enxinlong.com/img-preview/3/3/12078006/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021年重庆第十八中学高一上 立体几何初步单元测试卷(含答案与解析)第3页](http://m.enxinlong.com/img-preview/3/3/12078006/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021年重庆第十八中学高一上 立体几何初步单元测试卷(含答案与解析)
展开
这是一份2021年重庆第十八中学高一上 立体几何初步单元测试卷(含答案与解析),共24页。试卷主要包含了单选题,多选题,解答题等内容,欢迎下载使用。
一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列推理错误的是( )
A.A∈l,A∈α,B∈l,B∈α⇒l⊂α
B.A∈α,A∈β,B∈α,B∈β⇒α∩β=AB
C.l⊄α,A∈l⇒A∉α
D.A∈l,l⊂α⇒A∈α
3.在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,当BD∥平面EFGH时,下面结论正确的是( )
A.E,F,G,H一定是各边的中点
B.G,H一定是CD,DA的中点
C.BE∶EA=BF∶FC,且DH∶HA=DG∶GC
D.AE∶EB=AH∶HD,且BF∶FC=DG∶GC
4.如图,α∩β=l,A、B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过( )
A.点A B.点B
C.点C但不过点M D.点C和点M
5.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是( )
A.AB∥m B.AC⊥m
C.AB∥β D.AC⊥β
6.已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为eq \f(9,4),底面是边长为eq \r(3)的正三角形.若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( )
A.eq \f(5π,12) B.eq \f(π,3) C.eq \f(π,4) D.eq \f(π,6)
7.在正方体ABCD-A1B1C1D1中,过点A作平面A1BD的垂线,垂足为点H.以下结论中,错误的是( )
A.点H是△A1BD的垂心
B.AH⊥平面CB1D1
C.AH的延长线经过点C1
D.直线AH和BB1所成的角为45°
8.已知矩形ABCD,AB=1,BC=eq \r(2),将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中( )
A.存在某个位置,使得直线AC与直线BD垂直
B.存在某个位置,使得直线AB与直线CD垂直
C.存在某个位置,使得直线AD与直线BC垂直
D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直
二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分)
9.一几何体的平面展开图如图所示,其中四边形为正方形,、分别为、的中点,在此几何体中,给出的下面结论中正确的有( )
A.直线与直线异面B.直线与直线异面
C.直线∥平面D.直线∥平面
10.如图,PA垂直于以AB为直径的圆所在的平面,点C是圆周上异于A,B的任一点,则下列结论中正确的是( )
A.PB⊥AC
B.PC⊥BC
C.AC⊥平面PBC
D.平面PAC⊥平面PBC
11.如图,在正方体中,点在线段上运动,则 ( )
A.直线平面
B.三棱锥的体积为定值
C.异面直线与所成角的取值范围是
D.直线与平面所成角的正弦值的最大值为[来源:学*科*网]
12.若将正方形沿对角线折成直二面角,则下列结论中正确的是( )
A.异面直线与所成的角为B.
C.是等边三角形D.二面角的平面角正切值是
二、填空题(本大题共4小题,每小题5分,共20分)
13.下列四个命题:①若a∥b,a∥α,则b∥α;②若a∥α,b⊂α,则a∥b;③若a∥α,则a平行于α内所有的直线;④若a∥α,a∥b,b⊄α,则b∥α.
其中正确命题的序号是________.
14.如图所示,在直四棱柱ABCD—A1B1C1D1中,当底面四边形A1B1C1D1满足条件________时,有A1C⊥B1D1.(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况)
15.已知四棱锥P—ABCD的底面ABCD是矩形,PA⊥底面ABCD,点E、F分别是棱PC、PD的中点,则
①棱AB与PD所在直线垂直;
②平面PBC与平面ABCD垂直;
③△PCD的面积大于△PAB的面积;
④直线AE与直线BF是异面直线.
以上结论正确的是____________.(写出所有正确结论的编号)
16.如图所示,已知矩形ABCD中,AB=3,BC=a,若PA⊥平面AC,在BC边上取点E,使PE⊥DE,则满足条件的E点有两个时,a的取值范围是________.
四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(10分)如图所示,在长方体ABCD-A1B1C1D1中,M、N分别为AB、A1D1的中点,判断MN与平面A1BC1的位置关系,为什么?
18.(12分)如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.
求证:(1)平面EFG∥平面ABC;
(2)BC⊥SA.
19.(12分)如图,在三棱锥P—ABC中,PA⊥底面ABC,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.
(1)求证:BC⊥平面PAC.
(2)是否存在点E使得二面角A—DE—P为直二面角?并说明理由.
20.(12分)如图,在直三棱柱ABC-A1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C的中点.
(1)求证:DE∥平面ABC;
(2)求三棱锥E-BCD的体积.
21.(12分)如图所示,四边形ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.
(1)求证:PA∥平面BDE;
(2)求证:平面PAC⊥平面BDE;
(3)若二面角E-BD-C为30°,求四棱锥P-ABCD的体积.
22.(12分)如图,在四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,AC=2eq \r(2),PA=2,E是PC上的一点,PE=2EC.
(1)证明:PC⊥平面BED;
(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.
2021重庆第十八中学高一上 立体几何初步单元测试卷
答案与解析
(时间:120分钟 满分:150分)
一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列推理错误的是( )
A.A∈l,A∈α,B∈l,B∈α⇒l⊂α
B.A∈α,A∈β,B∈α,B∈β⇒α∩β=AB
C.l⊄α,A∈l⇒A∉α
D.A∈l,l⊂α⇒A∈α
答案 C
解析 若直线l∩α=A,显然有l⊄α,A∈l,但A∈α.
2.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于( )
A.30° B.45° C.60° D.90°
答案 D
解析 由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD=90°.
3.在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,当BD∥平面EFGH时,下面结论正确的是( )
A.E,F,G,H一定是各边的中点
B.G,H一定是CD,DA的中点
C.BE∶EA=BF∶FC,且DH∶HA=DG∶GC
D.AE∶EB=AH∶HD,且BF∶FC=DG∶GC
答案 D
解析 由于BD∥平面EFGH,所以有BD∥EH,BD∥FG,则AE∶EB=AH∶HD,且BF∶FC=DG∶GC.
4.如图,α∩β=l,A、B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过( )
A.点A B.点B
C.点C但不过点M D.点C和点M
答案 D
解析 ∵AB⊂γ,M∈AB,∴M∈γ.
又α∩β=l,M∈l,∴M∈β.
根据公理3可知,M在γ与β的交线上.
同理可知,点C也在γ与β的交线上.
5.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是( )
A.AB∥m B.AC⊥m
C.AB∥β D.AC⊥β
答案 D
解析 ∵m∥α,m∥β,α∩β=l,∴m∥l.
∵AB∥l,∴AB∥m.故A一定正确.
∵AC⊥l,m∥l,∴AC⊥m.故B一定正确.
∵A∈α,AB∥l,l⊂α,∴B∈α.
∴AB⊄β,l⊂β.∴AB∥β.故C也正确.
∵AC⊥l,当点C在平面α内时,AC⊥β成立,
当点C不在平面α内时,AC⊥β不成立.
故D不一定成立.
6.已知三棱柱ABC-A1B1C1的侧棱与底面垂直,体积为eq \f(9,4),底面是边长为eq \r(3)的正三角形.若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( )
A.eq \f(5π,12) B.eq \f(π,3) C.eq \f(π,4) D.eq \f(π,6)
答案 B
解析 如图所示,作PO⊥平面ABC,则O为△ABC的中心,连接AP,AO.
S△ABC=eq \f(1,2)×eq \r(3)×eq \r(3)×sin 60°=eq \f(3\r(3),4).
∴=S△ABC×OP=eq \f(3\r(3),4)×OP=eq \f(9,4),
∴OP=eq \r(3).
又OA=eq \f(\r(3),2)×eq \r(3)×eq \f(2,3)=1,
∴tan∠OAP=eq \f(OP,OA)=eq \r(3),又0
相关试卷
这是一份2023-2024学年重庆市第十八中学高一上学期期中学习能力摸底数学试题含答案,共17页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年重庆市第十八中学高一上学期12月月考数学试题含答案,文件包含重庆市第十八中学2023-2024学年高一上学期12月月考数学试题原卷版docx、重庆市第十八中学2023-2024学年高一上学期12月月考数学试题Word版含解析docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
这是一份重庆市第十八中学2023-2024学年高一上学期12月月考数学试题(Word版附解析),共19页。试卷主要包含了考试时间, 已知,下列不等式中正确的是, 函数的零点所在区间是, 函数在区间上的图象大致为, 下列说法正确的是等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)