所属成套资源:新初二数学暑期专题复习试卷含答案
人教新版数学八年级专题复习《不等式与不等式组》(含答案)试卷
展开
这是一份人教新版数学八年级专题复习《不等式与不等式组》(含答案)试卷,共37页。试卷主要包含了足球等内容,欢迎下载使用。
人教新版数学八年级专题复习《不等式与不等式组》
一.选择题(共10小题)
1.(2021•醴陵市模拟)为解决部分家长在放学时间不能按时接送孩子的问题,我市许多学校都启动了“课后服务”工作,某学校为了开展好课后服务,计划用不超过10000元的资金购买足球、篮球和排球用于球类兴趣班,已知足球、篮球、排球的单价分别为100元、80、60元,且根据参加球类兴趣班的学生数了解到以下两项信息:①篮球的数量必须比足球多10个,②排球数量必须是足球的3倍.则学校最多能购买( )足球.
A.100个 B.25个 C.26个 D.30个
2.(2021春•郾城区期末)解集是如图所示的不等式组为( )
A. B.
C. D.
3.(2021春•阳谷县期末)如果不等式组无解,则下列数轴示意图正确的是( )
A. B.
C. D.
4.(2021春•海淀区校级期末)已知关于x的不等式组的解集是3≤x≤4,则a+b的值为( )
A.5 B.8 C.11 D.9
5.(2021春•新民市期中)不等式组的最小整数解为( )
A.2 B.1 C.﹣1 D.﹣2
6.(2021•黄埔区二模)已知点M(1﹣m,2m+6)在第四象限,则m的取值范围是( )
A.m>1 B.﹣3<m<1 C.m>﹣3 D.m<﹣3
7.(2021•济宁)不等式组的解集在数轴上表示正确的是( )
A.
B.
C.
D.
8.(2019春•内黄县期末)若3a﹣22和2a﹣3是实数m的两个平方根,且t=,则不等式﹣≥的解集为( )
A.x≥ B.x≤ C.x≥ D.x≤
9.(2018•巴彦淖尔)若关于x,y的方程组的解满足x﹣y>﹣,则m的最小整数解为( )
A.﹣3 B.﹣2 C.﹣1 D.0
10.(2020春•东兴区校级月考)数学著作《算术研究》一书中,对于任意实数,通常用[x]表示不超过x的最大整数,如:[π]=3,[2]=2,[﹣2.1]=﹣3,给出如下结论:
①[﹣x]=﹣x;
②若[x]=n,则x的取值范围是n≤x<n+1;
③当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2;
④x=﹣2.75是方程4x﹣2[x]+5=0的唯一一个解.
其中正确的结论有( )
A.①② B.②③ C.①③ D.③④
二.填空题(共10小题)
11.(2021春•海淀区校级期末)已知关于x的不等式(m﹣1)x>6,两边同除以m﹣1,得x<,则化简:|m﹣1|﹣|2﹣m|= .
12.(2021春•杨浦区期末)如果不等式组无解,那么a的取值范围是 .
13.(2021•南岗区校级二模)不等式组的解集是 .
14.(2021春•鼓楼区校级期中)已知实数a,b,c,满足a+b=8,c﹣a=10.若a≥﹣2b,则a+b+c的最大值为 .
15.(2021•香坊区二模)不等式组的解集为 .
16.(2021•松北区二模)不等式组的解集是 .
17.(2021•丰台区二模)某单位有10000名职工,想通过验血的方式筛查出某种病毒的携带者.如果对每个人的血样逐一化验,需要化验10000次.统计专家提出了一种化验方法:随机地按5人一组分组,然后将各组5个人的血样混合再化验.如果混合血样呈阴性,说明这5个人全部阴性;如果混合血样呈阳性,说明其中至少有一个人呈阳性,就需要对这组的每个人再分别化验一次.假设携带该病毒的人数占0.05%.
回答下列问题:
(1)按照这种化验方法是否能减少化验次数 (填“是”或“否”);
(2)按照这种化验方法至多需要 次化验,就能筛查出这10000名职工中该种病毒的携带者.
18.(2021春•成都月考)关于x的不等式组有且只有3个整数解,则常数k的取值范围是 .
19.(2019秋•青羊区期末)对于整数a,b,c,d,符号表示运算ad﹣bc,已知1<<3,则bd的值是 .
20.(2019春•沙坪坝区校级期末)为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品 件.
三.解答题(共10小题)
21.(2021春•海淀区校级期末)某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求住宿生有多少人,安排住宿的房间有多少间.
22.(2021•山西)(1)计算:(﹣1)4×|﹣8|+(﹣2)3×()2.
(2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.
.
解:2(2x﹣1)>3(3x﹣2)﹣6……第一步
4x﹣2>9x﹣6﹣6……第二步
4x﹣9x>﹣6﹣6+2……第三步
﹣5x>﹣10……第四步
x>2……第五步
任务一:填空:①以上解题过程中,第二步是依据 (运算律)进行变形的;
②第 步开始出现错误,这一步错误的原因是 ;
任务二:请直接写出该不等式的正确解集.
23.(2021春•海淀区校级期末)如果(m+3)x<2m+6的解集为x<2,求m的取值范围.
24.(2021•盐城)解不等式组:.
25.(2021春•郾城区期末)请根据小明同学解不等式的过程,完成下面各项任务:
解不等式≥.
解:去分母,得2(x+1)≥3(2x﹣5)+1①
去括号,得2x+2≥6x﹣5+1②
移项,得2x﹣6x≥﹣5+1+2③
合并同类项,得﹣4x≥﹣2④
系数化为1,得x≥⑤
所以不等式的解集为:x≥.
任务一:填空:以上解题过程中,从第 步开始出现错误,错误的原因是 ;
任务二:请从出现错误的步骤开始,把正确的解答过程,完整的写出来;
任务三:以上解题过程中,除了开始出现的错误外,还有哪些错误值得注意.
26.(2021春•江都区校级期末)已知关于x,y的方程组.
(1)求方程组的解(用含m的代数式表示);
(2)若方程组的解同时满足x为非正数,y为负数,求m的取值范围;
(3)在(2)的条件下化简|m﹣2|+|3﹣m|.
27.(2021春•高邮市校级期末)(1)解方程组:;
(2)解下列不等式组,并把解集在数轴上表示出来:.
28.(2021•工业园区校级模拟)2020年6月1日上午,国务院总理李克强在山东烟台考察时表示,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.波波准备购进A、B两种类型的便携式风扇到华润万家门口出售.已知2台A型风扇和5台B型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元.
(1)求A型风扇、B型风扇进货的单价各是多少元?
(2)波波准备购进这两种风扇共100台,根据市场调查发现,A型风扇销售情况比B型风扇好,波波准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,波波共有几种进货方案?哪种进货方案的费用最低?最低费用为多少元?
29.(2021春•渝中区校级期中)五月,本地新鲜枇杷大量上市,某水果超市从枇杷基地购进了一批A、B两个品种的枇杷销售,两个品种的枇杷均按25%的盈利定价销售,前两天的销售情况如表所示:
销售时间
销售数量
销售额
A品种
B品种
第一天
400斤
500斤
4000元
第二天
300斤
800斤
4700元
(1)求该超市购进A、B两个品种的枇杷的成本价分别是每斤多少元?
(2)两天后剩下的B品种枇杷是剩下的A品种枇杷数量的,但A品种枇杷已经开始变坏,出现了的损耗.该超市决定降价促销:A品种枇杷按原定价打9折销售,B品种枇杷每斤在原定价基础上直接降价销售.假如除损耗的以外,第三天把剩下的枇杷全部卖完,要保证第三天的总利润率不低于7.5%,则B品种枇杷每斤在原定价基础上最多直接降价多少元?
30.(2021•长沙模拟)某市教育局对某镇实施“教育精准扶贫”,为某镇建了中、小两种图书馆.若建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元.
(1)建立每个中型图书馆和每个小型图书馆各需要多少万元?
(2)现要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,那么有哪几种方案?
2021年新初二数学人教新版专题复习《不等式与不等式组》
参考答案与试题解析
一.选择题(共10小题)
1.(2021•醴陵市模拟)为解决部分家长在放学时间不能按时接送孩子的问题,我市许多学校都启动了“课后服务”工作,某学校为了开展好课后服务,计划用不超过10000元的资金购买足球、篮球和排球用于球类兴趣班,已知足球、篮球、排球的单价分别为100元、80、60元,且根据参加球类兴趣班的学生数了解到以下两项信息:①篮球的数量必须比足球多10个,②排球数量必须是足球的3倍.则学校最多能购买( )足球.
A.100个 B.25个 C.26个 D.30个
【考点】一元一次不等式的应用.菁优网版权所有
【专题】一元一次不等式(组)及应用;应用意识.
【分析】设足球x个,则篮球(x+10)个,排球3x个,由用不超过10000元的资金购买足球、篮球和排球,列出不等式,即可求解.
【解答】解:设足球x个,则篮球(x+10)个,排球3x个,
由题意可得:100x+80(x+10)+60×3x≤10000,
解得:x≤,
∵x为正整数,
∴x最大取25,
故选:B.
【点评】本题考查了一元一次不等式的应用,找出正确的不等关系是解题的关键.
2.(2021春•郾城区期末)解集是如图所示的不等式组为( )
A. B.
C. D.
【考点】在数轴上表示不等式的解集.菁优网版权所有
【专题】一元一次不等式(组)及应用;几何直观;运算能力.
【分析】分别求出四个不等式组的解就可知道判定答案了.
【解答】解:A、不等式组的解集为:x<﹣2,不是数轴上表示的解集,故此选项不符合题意;
B、不等式组的解集为:﹣2≤x<3,是数轴上表示的解集,故此选项符合题意;
C、不等式组的无解,不是数轴上表示的解集,故此选项不符合题意;
D、不等式组的解集为:2≤x<3,不是数轴上表示的解集,故此选项不符合题意.
故选:B.
【点评】本题考查了不等式组的解集在数轴上表示.不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
3.(2021春•阳谷县期末)如果不等式组无解,则下列数轴示意图正确的是( )
A. B.
C. D.
【考点】数轴;不等式的解集.菁优网版权所有
【专题】一元一次不等式(组)及应用;几何直观.
【分析】根据已知解集确定出数轴上表示的解集即可.
【解答】解:若不等式组无解,则数轴示意图正确的是:
故选:D.
【点评】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
4.(2021春•海淀区校级期末)已知关于x的不等式组的解集是3≤x≤4,则a+b的值为( )
A.5 B.8 C.11 D.9
【考点】解一元一次不等式组.菁优网版权所有
【专题】一元一次不等式(组)及应用;运算能力.
【分析】分别求出每一个不等式的解集,结合不等式组的解集求出a、b的值,代入计算即可.
【解答】解:解不等式x﹣a≥1,得:x≥a+1,
解不等式x+5≤b,得:x≤b﹣5,
∵不等式组的解集为3≤x≤4,
∴a+1=3,b﹣5=4,
∴a=2,b=9,
则a+b=2+9=11,
故选:C.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
5.(2021春•新民市期中)不等式组的最小整数解为( )
A.2 B.1 C.﹣1 D.﹣2
【考点】一元一次不等式组的整数解.菁优网版权所有
【专题】一元一次不等式(组)及应用;运算能力.
【分析】先求出每个不等式的解集,再求出不等式组的解集即可.
【解答】解:,
解不等式①,得x>﹣
解不等式②,得x≤4,
所以不等式组的解集是﹣<x≤4,
所以不等式组的最小整数解是﹣2,
故选:D.
【点评】本题考查了不等式组的整数解,解一元一次不等式组和解一元一次不等式等知识点,能根据不等式的解集求出不等式组的解集是解此题的关键.
6.(2021•黄埔区二模)已知点M(1﹣m,2m+6)在第四象限,则m的取值范围是( )
A.m>1 B.﹣3<m<1 C.m>﹣3 D.m<﹣3
【考点】解一元一次不等式组;点的坐标.菁优网版权所有
【专题】一元一次不等式(组)及应用;平面直角坐标系;运算能力.
【分析】根据点M在第四象限列出关于m的不等式组,分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
【解答】解:根据题意,得:,
解不等式①,得:m<1,
解不等式②,得:m<﹣3,
则不等式组的解集为m<﹣3,
故选:D.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
7.(2021•济宁)不等式组的解集在数轴上表示正确的是( )
A.
B.
C.
D.
【考点】在数轴上表示不等式的解集;解一元一次不等式组.菁优网版权所有
【专题】一元一次不等式(组)及应用;运算能力.
【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出不等式组的解集即可.
【解答】解:,
解不等式①,得x≥﹣1,
解不等式②,得x<3,
所以不等式组的解集是﹣1≤x<3,
在数轴上表示出来为:
,
故选:B.
【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.
8.(2019春•内黄县期末)若3a﹣22和2a﹣3是实数m的两个平方根,且t=,则不等式﹣≥的解集为( )
A.x≥ B.x≤ C.x≥ D.x≤
【考点】平方根;解一元一次不等式.菁优网版权所有
【专题】常规题型;运算能力.
【分析】先根据平方根求出a的值,再求出m,求出t,再把t的值代入不等式,求出不等式的解集即可.
【解答】解:∵3a﹣22和2a﹣3是实数m的平方根,
∴3a﹣22+2a﹣3=0,
解得:a=5,
2a﹣3=7,
所以m=49,
t==7,
∵﹣≥,
∴﹣≥
解得:x≤,
故选:B.
【点评】本题考查了算术平方根、解一元一次不等式和平方根,能求出t的值是解此题的关键.
9.(2018•巴彦淖尔)若关于x,y的方程组的解满足x﹣y>﹣,则m的最小整数解为( )
A.﹣3 B.﹣2 C.﹣1 D.0
【考点】解二元一次方程组;解一元一次不等式.菁优网版权所有
【专题】常规题型;运算能力.
【分析】方程组中的两个方程相减得出x﹣y=3m+2,根据已知得出不等式,求出不等式的解集即可.
【解答】解:,
①﹣②得:x﹣y=3m+2,
∵关于x,y的方程组的解满足x﹣y>﹣,
∴3m+2>﹣,
解得:m>﹣,
∴m的最小整数解为﹣1,
故选:C.
【点评】本题考查了解一元一次不等式和解二元一次方程组、二元一次方程组的解、一元一次不等式的整数解等知识点,能得出关于m的不等式是解此题的关键.
10.(2020春•东兴区校级月考)数学著作《算术研究》一书中,对于任意实数,通常用[x]表示不超过x的最大整数,如:[π]=3,[2]=2,[﹣2.1]=﹣3,给出如下结论:
①[﹣x]=﹣x;
②若[x]=n,则x的取值范围是n≤x<n+1;
③当﹣1<x<1时,[1+x]+[1﹣x]的值为1或2;
④x=﹣2.75是方程4x﹣2[x]+5=0的唯一一个解.
其中正确的结论有( )
A.①② B.②③ C.①③ D.③④
【考点】数学常识;一元一次方程的解;解一元一次不等式组.菁优网版权所有
【专题】新定义.
【分析】①可举反例;②可根据题意中的规定判断;③当﹣1<x<0,x=0,0<x<1时,分类讨论得结论;④根据x的取值范围,求出方程的解后判断.
【解答】解:因为[x]表示不大于x的最大整数,∴当[x]=n时,n≤x,∴①不一定正确;
若[x]=n,则x的取值范围是n≤x<n+1,故②是正确的;
当﹣1<x<0时,[1+x]+[1﹣x]=0+1=1,
当x=0时,[1+x]+[1﹣x]=1+1=2,
当0<x<1时,[1+x]+[1﹣x]=1+0=1,综上③是正确的;
由题意,得0≤x﹣[x]<1,
4x﹣2[x]+5=0,
2x﹣[x]+=0,
x﹣[x]=﹣x﹣,
∴0≤﹣x﹣<1,
∴﹣3.5<x≤﹣2.5.
当﹣3.5<x<﹣3时,方程变形为4x﹣2×(﹣4)+5=0,
解得x=﹣3.25;
当﹣3≤x≤﹣2.5时,方程变形为4x﹣2×(﹣3)+5=0,
解得x=﹣2.75;
所以﹣3.25与﹣2.75都是方程4x﹣2[x]+5=0的解.故④是错误的.
故选:B.
【点评】本题考查了不等式组、方程的解法.题目难度较大.理解题意和学会分类讨论是解决本题的关键.
二.填空题(共10小题)
11.(2021春•海淀区校级期末)已知关于x的不等式(m﹣1)x>6,两边同除以m﹣1,得x<,则化简:|m﹣1|﹣|2﹣m|= ﹣1 .
【考点】绝对值;解一元一次不等式.菁优网版权所有
【专题】一元一次不等式(组)及应用;运算能力.
【分析】首先根据不等式的两边同时乘(或除以)同一个负数,不等号的方向改变,可得m﹣1<0,所以m<1;然后判断出2﹣m的正负,求出|m﹣1|﹣|2﹣m|的值是多少即可.
【解答】解:因为(m﹣1)x>6,两边同除以m﹣1,得x<,
所以m﹣1<0,m<1,
所以2﹣m>0,
所以|m﹣1|﹣|2﹣m|
=(1﹣m)﹣(2﹣m)
=1﹣m﹣2+m
=﹣1.
故答案为:﹣1.
【点评】此题主要考查了解一元一次不等式,不等式的基本性质:(1)不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘(或除以)同一个负数,不等号的方向改变;(3)等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;解答此题的关键是判断出m﹣1<0.
12.(2021春•杨浦区期末)如果不等式组无解,那么a的取值范围是 a≤2 .
【考点】解一元一次不等式组.菁优网版权所有
【专题】一元一次不等式(组)及应用;运算能力.
【分析】分别求出每一个不等式的解集,根据口诀:大大小小无解了可得关于a的不等式,解之即可.
【解答】解:解不等式x﹣2≥a,得:x≥a+2,
解不等式x+2<3a,得:x<3a﹣2,
∵不等式组的无解,
∴a+2≥3a﹣2,
解得a≤2,
故答案为:a≤2.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
13.(2021•南岗区校级二模)不等式组的解集是 x≥1 .
【考点】解一元一次不等式组.菁优网版权所有
【专题】一元一次不等式(组)及应用;运算能力.
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【解答】解:解不等式≤1,得:x≥1,
解不等式3x+2≥1,得:x≥﹣,
∴不等式组的解集为x≥1.
故答案为:x≥1.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
14.(2021春•鼓楼区校级期中)已知实数a,b,c,满足a+b=8,c﹣a=10.若a≥﹣2b,则a+b+c的最大值为 34 .
【考点】不等式的性质.菁优网版权所有
【专题】整式;运算能力.
【分析】由c﹣a=10得c=a+10,与a+b=8相加得a+b+c=a+18,由a+b=8及a≥﹣2b,可得a的最大值为16,从而得出a+b+c的最大值.
【解答】解:由c﹣a=10得c=a+10,
由a+b=8得a+b+c=a+18,
∵a+b=8及a≥﹣2b,
∴a≤16,
∴a的最大值为16,
∴a+b+c的最大值=18+16=34.
故答案为:34.
【点评】本题考查了不等式的性质运用.关键是由已知等式得出a+b+c的表达式,再求最大值.
15.(2021•香坊区二模)不等式组的解集为 ﹣1<x≤2 .
【考点】解一元一次不等式组.菁优网版权所有
【专题】一元一次不等式(组)及应用;运算能力.
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
【解答】解:解不等式2(x﹣2)≤2﹣x,得:x≤2,
解不等式>1,得:x>﹣1,
则不等式组的解集为﹣1<x≤2,
故答案为:﹣1<x≤2.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
16.(2021•松北区二模)不等式组的解集是 2<x≤ .
【考点】解一元一次不等式组.菁优网版权所有
【专题】一元一次不等式(组)及应用;运算能力.
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
【解答】解:解不等式2x+1≤10,得:x≤,
解不等式3x﹣5>1,得:x>2,
则不等式组的解集为2<x≤,
故答案为:2<x≤.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
17.(2021•丰台区二模)某单位有10000名职工,想通过验血的方式筛查出某种病毒的携带者.如果对每个人的血样逐一化验,需要化验10000次.统计专家提出了一种化验方法:随机地按5人一组分组,然后将各组5个人的血样混合再化验.如果混合血样呈阴性,说明这5个人全部阴性;如果混合血样呈阳性,说明其中至少有一个人呈阳性,就需要对这组的每个人再分别化验一次.假设携带该病毒的人数占0.05%.
回答下列问题:
(1)按照这种化验方法是否能减少化验次数 是 (填“是”或“否”);
(2)按照这种化验方法至多需要 2025 次化验,就能筛查出这10000名职工中该种病毒的携带者.
【考点】一元一次不等式的应用.菁优网版权所有
【专题】应用题;应用意识.
【分析】(1)10000人5人化验一次,可化验2000次,比一人一次的少很多次;
(2)根据题意可以知道有5人携带,最多次数的是这5人不在同一组,即第二轮有5组即25人要化验,即可求出结果.
【解答】解:(1)是,
10000÷5=2000次<10000次,明显减少;
(2)10000×0.05%=5人,
故有5人是携带者,
第一轮:10000÷5=2000次,
至多化验次数,故而这5个人都在不同组,
这样次数最多,
∴第二轮有5个组需要化验,
5×5=25次,
2000+25=2025次,
故至多需要2025次化验.
【点评】本题考查统计与概率和不等式的应用,解本题的关键弄懂题意.
18.(2021春•成都月考)关于x的不等式组有且只有3个整数解,则常数k的取值范围是 ﹣3<k≤﹣2 .
【考点】一元一次不等式组的整数解.菁优网版权所有
【专题】一元一次不等式(组)及应用;运算能力.
【分析】解两个不等式得出其解集,再根据不等式组整数解的情况列出关于k的不等式,解之即可.
【解答】解:解不等式4x﹣3≥2x﹣5,得:x≥﹣1,
解不等式x+2<k+6,得:x<k+4,
∵不等式组只有3个整数解,
∴不等式组的整数解为﹣1、0、1,
则1<k+4≤2,
解得﹣3<k≤﹣2,
故答案为:﹣3<k≤﹣2.
【点评】本题考查的是解一元一次不等式组,解题的关键是得出关于k的不等式.
19.(2019秋•青羊区期末)对于整数a,b,c,d,符号表示运算ad﹣bc,已知1<<3,则bd的值是 2 .
【考点】解一元一次不等式组.菁优网版权所有
【专题】新定义.
【分析】根据题中已知条件得出关于bd的不等式,直接进行解答即可.
【解答】解:已知1<<3,即1<4﹣bd<3
所以
解得1<bd<3因为b,d都是整数,则bd一定也是整数,因而bd=2.
【点评】读懂题目,把题目中的式子转化为一般的式子是解决本题的关键.
20.(2019春•沙坪坝区校级期末)为迎接建国70周年,某商店购进A,B,C三种纪念品共若干件,且A,B,C三种纪念品的数量之比为8:7:9.一段时间后,根据销售情况,补充三种纪念品后,库存总数量比第一次多200件,且A,B,C三种纪念品的比例为9:10:10.又一段时间后,根据销售情况,再次补充三种纪念品,库存总数量比第二次多170件,且A,B,C三种纪念品的比例为7:6:6.已知第一次三种纪念品总数量不超过1000件,则第一次购进A种纪念品 320 件.
【考点】三元一次方程组的应用;一元一次不等式的应用.菁优网版权所有
【专题】销售问题;应用意识.
【分析】可设第一次购进后库存总数量为m件,第一次购进A种纪念品8x件,则第一次购进B种纪念品7x件,第一次购进C种纪念品9x件,设第二次购进后A种纪念品9y件,则第二次购进后B种纪念品10y件,第二次购进后C种纪念品10y件,设第三次购进后A种纪念品7z件,则第三次购进后B种纪念品6z件,第三次购进后C种纪念品6z件,根据第一次三种纪念品总数量不超过1000件,列出方程组和不等式求解即可.
【解答】解:设第一次购进后库存总数量为m件,第一次购进A种纪念品8x件,则第一次购进B种纪念品7x件,第一次购进C种纪念品9x件,设第二次购进后A种纪念品9y件,则第二次购进后B种纪念品10y件,第二次购进后C种纪念品10y件,设第三次购进后A种纪念品7z件,则第三次购进后B种纪念品6z件,第三次购进后C种纪念品6z件,依题意有
,
则24x=29y﹣200=19z﹣370=m,
∵0<m≤1000,
∴0<x≤41,6<y≤41,19<z≤72,
∵x,y、z均为正整数,
∴1≤x≤41,7≤y≤41,20≤z≤72,
24x=29y﹣200化为:x=y﹣8+,
∴5y﹣8=24n(n为正整数),
∴5y=8+24n=8(1+3n),
∴y=8k(k为正整数),5k=3n+1,
∴7≤8k≤41,n=k+,
∴1≤k≤5,1≤2k﹣1≤9,
∵2k﹣1必为奇数且是3的整数倍.
∴2k﹣1=3或2k﹣1=9,
∴k=2或k=5,
当k=2时,y=16,x=11,z=33(舍)
∴k只能为5,
∴y=40,x=40,z=70.
∴8x=8×40=320.
答:第一次购进A种纪念品320件.
故答案为:320.
【点评】考查了三元一次方程组的应用,一元一次不等式的应用,解题的关键是找准等量关系,正确列出方程组并能在给定约束条件求解不定方程的整数解.
三.解答题(共10小题)
21.(2021春•海淀区校级期末)某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求住宿生有多少人,安排住宿的房间有多少间.
【考点】一元一次不等式组的应用.菁优网版权所有
【专题】一元一次不等式(组)及应用;应用意识.
【分析】设安排住宿的房间有x间,则住宿生有(4x+20)人,根据“若每间住8人,则有一间宿舍不空也不满”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再结合x为整数即可得出结论.
【解答】解:设安排住宿的房间有x间,则住宿生有(4x+20)人,
依题意得:,
解得:5<x<7,
又∵x为整数,
∴x=6,
∴4x+20=44.
答:住宿生有44人,安排住宿的房间有6间.
【点评】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.
22.(2021•山西)(1)计算:(﹣1)4×|﹣8|+(﹣2)3×()2.
(2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.
.
解:2(2x﹣1)>3(3x﹣2)﹣6……第一步
4x﹣2>9x﹣6﹣6……第二步
4x﹣9x>﹣6﹣6+2……第三步
﹣5x>﹣10……第四步
x>2……第五步
任务一:填空:①以上解题过程中,第二步是依据 乘法分配律 (运算律)进行变形的;
②第 五 步开始出现错误,这一步错误的原因是 化系数为1可能用到性质3,即可能变不等号方向,其它都不会改变不等号方向 ;
任务二:请直接写出该不等式的正确解集.
【考点】有理数的混合运算;解一元一次不等式.菁优网版权所有
【专题】计算题;一元一次不等式(组)及应用;运算能力.
【分析】(1)先算乘方,再算乘法,最后算加法;如果有绝对值,要先做绝对值内的运算;
(2)去分母;去括号;移项;合并同类项;化系数为1,依此即可求解.
【解答】解:(1)(﹣1)4×|﹣8|+(﹣2)3×()2
=1×8﹣8×
=8﹣2
=6;
(2),
2(2x﹣1)>3(3x﹣2)﹣6……第一步,
4x﹣2>9x﹣6﹣6……第二步,
4x﹣9x>﹣6﹣6+2……第三步,
﹣5x>﹣10……第四步,
x>2……第五步,
任务一:填空:①以上解题过程中,第二步是依据乘法分配律(运算律)进行变形的;
②第五步开始出现错误,这一步错误的原因是化系数为1可能用到性质3,即可能变不等号方向,其它都不会改变不等号方向;
任务二:该不等式的正确解集是x<2.
故答案为:乘法分配律;五,化系数为1可能用到性质3,即可能变不等号方向,其它都不会改变不等号方向;x<2.
【点评】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.同时考查了解一元一次不等式,步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.
23.(2021春•海淀区校级期末)如果(m+3)x<2m+6的解集为x<2,求m的取值范围.
【考点】解一元一次不等式.菁优网版权所有
【专题】一元一次不等式(组)及应用;运算能力.
【分析】由原不等式变形为(m+3)x<2(m+3),解该不等式的下一步是两边都除以x的系数(m+3),题中给出的解集是x<2,改变了不等号的方向,所以x的系数是小于0的,据此可以求得m的取值范围.
【解答】解:由不等式(m+3)x<2m+6,得(m+3)x<2(m+3),
∵(m+3)x<2m+6的解集为x<2,
∴m+3>0,
解得m>﹣3.
【点评】本题考查的是解一元一次不等式,掌握不等式的基本性质是解答此题的关键.
24.(2021•盐城)解不等式组:.
【考点】解一元一次不等式组.菁优网版权所有
【专题】一元一次不等式(组)及应用;应用意识.
【分析】根据解不等式的表示方法分别解第一个和第二个不等式,解集依据:解的大于号后面是小数,小于号后面是大数,解就是在小数和大数中间.即可得答案.
【解答】解:
解不等式①得:x≥1,
解不等式②得:x<2,
在数轴上表示不等式①、②的解集(如图),
∴不等式组的解集为1≤x<2.
【点评】本题考查了一元一次方程组,解本题的关键记住:解的大于号后面是小数,小于号后面是大数,解就是在小数和大数中间.
25.(2021春•郾城区期末)请根据小明同学解不等式的过程,完成下面各项任务:
解不等式≥.
解:去分母,得2(x+1)≥3(2x﹣5)+1①
去括号,得2x+2≥6x﹣5+1②
移项,得2x﹣6x≥﹣5+1+2③
合并同类项,得﹣4x≥﹣2④
系数化为1,得x≥⑤
所以不等式的解集为:x≥.
任务一:填空:以上解题过程中,从第 ① 步开始出现错误,错误的原因是 两边都乘以12时右边1漏乘12 ;
任务二:请从出现错误的步骤开始,把正确的解答过程,完整的写出来;
任务三:以上解题过程中,除了开始出现的错误外,还有哪些错误值得注意.
【考点】解一元一次不等式.菁优网版权所有
【专题】一元一次不等式(组)及应用;运算能力.
【分析】任务一:去分母时两边都乘以12时右边1漏乘12,据此可得答案;
任务二:根据解一元一次不等式的步骤依次计算即可;
任务三:去括号、移项、系数化为1均有错误,逐一解答即可.
【解答】解:任务一:以上解题过程中,从第①步开始出现错误,错误的原因是两边都乘以12时右边1漏乘12,
故答案为:①,两边都乘以12时右边1漏乘12;
任务二:正确过程如下:
去分母,得2(x+1)≥3(2x﹣5)+12,
去括号,得2x+2≥6x﹣15+12,
移项,得2x﹣6x≥﹣15+12﹣2,
合并同类项,得﹣4x≥﹣5,
系数化为1,得x≤;
任务三:去括号时括号内每项都要乘括号前的常数,移项要变号,系数化为1时两边都乘以或除以负数时不等号的方向要改变.
【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
26.(2021春•江都区校级期末)已知关于x,y的方程组.
(1)求方程组的解(用含m的代数式表示);
(2)若方程组的解同时满足x为非正数,y为负数,求m的取值范围;
(3)在(2)的条件下化简|m﹣2|+|3﹣m|.
【考点】绝对值;列代数式;二元一次方程组的解;解二元一次方程组;解一元一次不等式组.菁优网版权所有
【专题】一次方程(组)及应用;一元一次不等式(组)及应用;运算能力.
【分析】(1)利用加减法解关于x、y的方程组;
(2)利用方程组的解得到,然后解关于m的不等式组即可求解;
(3)根据(2)的结论﹣2<m≤2进行化简即可求解.
【解答】解:(1),
由①+②,得2x=4m﹣8,解得x=2m﹣4,
由①﹣②,得2y=﹣2m﹣4,解得y=﹣m﹣2,
所以原方程组的解是;
(2)∵x为非正数,y为负数,
∴x≤0,y<0,
即,
解得﹣2<m≤2;
(3)∵﹣2<m≤2,
∴|m﹣2|+|3﹣m|=2﹣m+3﹣m=5﹣2m.
【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
27.(2021春•高邮市校级期末)(1)解方程组:;
(2)解下列不等式组,并把解集在数轴上表示出来:.
【考点】解二元一次方程组;在数轴上表示不等式的解集;解一元一次不等式组.菁优网版权所有
【专题】一元一次不等式(组)及应用;运算能力.
【分析】(1)先化简,再根据加减消元法解方程组即可求解;
(2)先求出其中各不等式的解集,再求出这些解集的公共部分,再把解集在数轴上表示出来即可求解.
【解答】解:(1)化简得,
①+②得4y=6,
解得y=1.5,
把y=1.5代入②得x+2×1.5=1,解得x=﹣2.
故方程组的解集为;
(2),
解①得x≤1,
解②得x>﹣3.
故不等式组的解集是﹣3<x≤1.
把解集在数轴上表示出来为:
【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.同时考查了解一元一次不等式组,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
28.(2021•工业园区校级模拟)2020年6月1日上午,国务院总理李克强在山东烟台考察时表示,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.波波准备购进A、B两种类型的便携式风扇到华润万家门口出售.已知2台A型风扇和5台B型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元.
(1)求A型风扇、B型风扇进货的单价各是多少元?
(2)波波准备购进这两种风扇共100台,根据市场调查发现,A型风扇销售情况比B型风扇好,波波准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,波波共有几种进货方案?哪种进货方案的费用最低?最低费用为多少元?
【考点】二元一次方程组的应用;一元一次不等式组的应用.菁优网版权所有
【专题】一元一次不等式(组)及应用;运算能力.
【分析】(1)设A型风扇进货的单价是x元,B型风扇进货的单价是y元,根据“2台A型风扇和5台B型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购进A型风扇m台,则购进B型风扇(100﹣m)台,根据“购进A型风扇不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各进货方案.
【解答】解:(1)设A型风扇进货的单价是x元,B型风扇进货的单价是y元,
依题意,得:,
解得:.
答:A型风扇进货的单价是10元,B型风扇进货的单价是16元;
(2)设购进A型风扇m台,则购进B型风扇(100﹣m)台,
依题意,得:,
解得:71≤m≤75,
又∵m为正整数,
∴m可以取72、73、74、75,
∴波波共有4种进货方案,
方案1:购进A型风扇72台,B型风扇28台;
方案2:购进A型风扇73台,B型风扇27台;
方案3:购进A型风扇74台,B型风扇26台;
方案4:购进A型风扇75台,B型风扇25台.
∵B型风扇进货的单价大于A型风扇进货的单价,
∴方案4:购进A型风扇75台,B型风扇25台的费用最低,
最低费用为75×10+25×16=1150元.
答:波波共有4种进货方案,方案4:购进A型风扇75台,B型风扇25台的费用最低,最低费用为1150元.
【点评】本题考查了一元一次不等式组二以及元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.
29.(2021春•渝中区校级期中)五月,本地新鲜枇杷大量上市,某水果超市从枇杷基地购进了一批A、B两个品种的枇杷销售,两个品种的枇杷均按25%的盈利定价销售,前两天的销售情况如表所示:
销售时间
销售数量
销售额
A品种
B品种
第一天
400斤
500斤
4000元
第二天
300斤
800斤
4700元
(1)求该超市购进A、B两个品种的枇杷的成本价分别是每斤多少元?
(2)两天后剩下的B品种枇杷是剩下的A品种枇杷数量的,但A品种枇杷已经开始变坏,出现了的损耗.该超市决定降价促销:A品种枇杷按原定价打9折销售,B品种枇杷每斤在原定价基础上直接降价销售.假如除损耗的以外,第三天把剩下的枇杷全部卖完,要保证第三天的总利润率不低于7.5%,则B品种枇杷每斤在原定价基础上最多直接降价多少元?
【考点】一元一次方程的应用;二元一次方程组的应用;一元一次不等式的应用.菁优网版权所有
【专题】一次方程(组)及应用;运算能力;应用意识.
【分析】(1)设枇杷A的销售价为每斤x元,枇杷B售价为每斤y元,根据第一天和第二天的销售额列出方程组即可求得A,B的售价,根据两个品种的枇杷均按25%的盈利定价销售,求出成本价;
(2)设枇杷A剩余a斤,则枇杷B剩余a斤,枇杷B每斤降价z元,求出第三天的总销售额和总成本,即可得到总利润,根据第三天的总利润不低于7.5%列出不等式,即可求得z.
【解答】解:(1)设枇杷A的销售价为每斤x元,枇杷B售价为每斤y元,
则,
解得,
因为两个品种的枇杷均按25%的盈利定价销售,则成本价的1.25倍是售价,
A成本价:5÷1.25=4(元/斤),
B成本价:4÷1.25=3.2(元/斤),
答:A、B两个品种的枇杷的成本价分别是4元/斤和3.2元/斤;
(2)设枇杷A剩余a斤,则枇杷B剩余a斤,枇杷B每斤降价z元,
第三天总销售额:5a(1﹣)×+(4﹣z)•a=6.7a﹣az,
第三天总成本:4a+3.2×a=6a,
由题意知总利润不低于7.5%,
∴6.7a﹣az﹣6a≥6a•7.5%,
∴z≤0.4,
∴B种枇杷最多每斤降0.4元.
【点评】本题考查了二元一次方程组,一元一次不等式的应用,体现了应用意识,找到题目中的等量关系和不等关系是解题的关键.
30.(2021•长沙模拟)某市教育局对某镇实施“教育精准扶贫”,为某镇建了中、小两种图书馆.若建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元.
(1)建立每个中型图书馆和每个小型图书馆各需要多少万元?
(2)现要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,那么有哪几种方案?
【考点】二元一次方程组的应用;一元一次不等式组的应用.菁优网版权所有
【专题】一次方程(组)及应用;一元一次不等式(组)及应用;应用意识.
【分析】(1)设建立每个中型图书馆需要x万元,建立每个小型图书馆需要y万元,根据建立3个中型图书馆和5个小型图书馆需要30万元,建立2个中型图书馆和3个小型图书馆需要19万元,列方程组求解.
(2)设建立中型图书馆a个,根据要建立中型图书馆和小型图书馆共10个,小型图书馆数量不多于中型图书馆数量,且总费用不超过44万元,列出不等式组求解.
【解答】解:(1)设建立每个中型图书馆需要x万元,建立每个小型图书馆需要y万元,
根据题意列方程组:.
解得:.
答:建立每个中型图书馆需要5万元,建立每个小型图书馆需要3万元.
(2)设建立中型图书馆a个,
根据题意得:.
解得:5≤a≤7.
∵a取正整数,
∴a=5,6,7.
∴10﹣a=5,4,3
答:一共有3种方案:
方案一:中型图书馆5个,小型图书馆5个;
方案二:中型图书馆6个,小型图书馆4个;
方案三:中型图书馆7个,小型图书馆3个.
【点评】本题主要考查了二元一次方程组的应用,以及一元一次不等式组的应用,找到关键描述语,进而找到所求的量的数量关系,列出方程组或不等式组求解.
考点卡片
1.数轴
(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.
数轴的三要素:原点,单位长度,正方向.
(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)
(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.
2.绝对值
(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.
①互为相反数的两个数绝对值相等;
②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.
③有理数的绝对值都是非负数.
(2)如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:
①当a是正有理数时,a的绝对值是它本身a;
②当a是负有理数时,a的绝对值是它的相反数﹣a;
③当a是零时,a的绝对值是零.
即|a|={a(a>0)0(a=0)﹣a(a<0)
3.有理数的混合运算
(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.
(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.
【规律方法】有理数混合运算的四种运算技巧
1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.
2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.
3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.
4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.
4.数学常识
数学常识
此类问题要结合实际问题来解决,生活中的一些数学常识要了解.比如给出一个物体的高度要会选择它合适的单位长度等等.
平时要注意多观察,留意身边的小知识.
5.平方根
(1)定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.
一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.
(2)求一个数a的平方根的运算,叫做开平方.
一个正数a的正的平方根表示为“”,负的平方根表示为“﹣”.
正数a的正的平方根,叫做a的算术平方根,记作.零的算术平方根仍旧是零.
平方根和立方根的性质
1.平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
2.立方根的性质:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.
6.列代数式
(1)定义:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.
(2)列代数式五点注意:①仔细辨别词义. 列代数式时,要先认真审题,抓住关键词语,仔细辩析词义.如“除”与“除以”,“平方的差(或平方差)”与“差的平方”的词义区分. ②分清数量关系.要正确列代数式,只有分清数量之间的关系. ③注意运算顺序.列代数式时,一般应在语言叙述的数量关系中,先读的先写,不同级运算的语言,且又要体现出先低级运算,要把代数式中代表低级运算的这部分括起来.④规范书写格式.列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用. ⑤正确进行代换.列代数式时,有时需将题中的字母代入公式,这就要求正确进行代换.
【规律方法】列代数式应该注意的四个问题
1.在同一个式子或具体问题中,每一个字母只能代表一个量.
2.要注意书写的规范性.用字母表示数以后,在含有字母与数字的乘法中,通常将“×”简写作“•”或者省略不写.
3.在数和表示数的字母乘积中,一般把数写在字母的前面,这个数若是带分数要把它化成假分数.
4.含有字母的除法,一般不用“÷”(除号),而是写成分数的形式.
7.一元一次方程的解
定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.
把方程的解代入原方程,等式左右两边相等.
8.一元一次方程的应用
(一)一元一次方程解应用题的类型有:
(1)探索规律型问题;
(2)数字问题;
(3)销售问题(利润=售价﹣进价,利润率=×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);
(5)行程问题(路程=速度×时间);
(6)等值变换问题;
(7)和,差,倍,分问题;
(8)分配问题;
(9)比赛积分问题;
(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).
(二)利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.
列一元一次方程解应用题的五个步骤
1.审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.
2.设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.
3.列:根据等量关系列出方程.
4.解:解方程,求得未知数的值.
5.答:检验未知数的值是否正确,是否符合题意,完整地写出答句.
9.二元一次方程组的解
(1)定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.
(2)一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.
10.解二元一次方程组
(1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x(或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.
(2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用的形式表示.
11.二元一次方程组的应用
(一)列二元一次方程组解决实际问题的一般步骤:
(1)审题:找出问题中的已知条件和未知量及它们之间的关系.
(2)设元:找出题中的两个关键的未知量,并用字母表示出来.
(3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.
(4)求解.
(5)检验作答:检验所求解是否符合实际意义,并作答.
(二)设元的方法:直接设元与间接设元.
当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.
12.三元一次方程组的应用
在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.
(1)把求等式中常数的问题可转化为解三元一次方程组,为以后待定系数法求二次函数解析式奠定基础.
(2)通过设二元与三元的对比,体验三元一次方程组在解决多个未知数问题中的优越性.
13.不等式的性质
(1)不等式的基本性质
①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:
若a>b,那么a±m>b±m;
②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:
若a>b,且m>0,那么am>bm或>;
③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:
若a>b,且m<0,那么am<bm或<;
(2)不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.
【规律方法】
1.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.
2.不等式的传递性:若a>b,b>c,则a>c.
14.不等式的解集
(1)不等式的解的定义:
使不等式成立的未知数的值叫做不等式的解.
(2)不等式的解集:
能使不等式成立的未知数的取值范围,叫做不等式的解的集合,简称解集.
(3)解不等式的定义:
求不等式的解集的过程叫做解不等式.
(4)不等式的解和解集的区别和联系
不等式的解是一些具体的值,有无数个,用符号表示;不等式的解集是一个范围,用不等号表示.不等式的每一个解都在它的解集的范围内.
15.在数轴上表示不等式的解集
用数轴表示不等式的解集时,要注意“两定”:
一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;
二是定方向,定方向的原则是:“小于向左,大于向右”.
【规律方法】不等式解集的验证方法
某不等式求得的解集为x>a,其验证方法可以先将a代入原不等式,则两边相等,其次在x>a的范围内取一个数代入原不等式,则原不等式成立.
16.解一元一次不等式
根据不等式的性质解一元一次不等式
基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.
以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.
注意:符号“≥”和“≤”分别比“>”和“<”各多了一层相等的含义,它们是不等号与等号合写形式.
17.一元一次不等式的应用
(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.
(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.
(3)列一元一次不等式解决实际问题的方法和步骤:
①弄清题中数量关系,用字母表示未知数.
②根据题中的不等关系列出不等式.
③解不等式,求出解集.
④写出符合题意的解.
18.解一元一次不等式组
(1)一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.
(2)解不等式组:求不等式组的解集的过程叫解不等式组.
(3)一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.
方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.
解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
19.一元一次不等式组的整数解
(1)利用数轴确定不等式组的解(整数解).
解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
(2)已知解集(整数解)求字母的取值.
一般思路为:先把题目中除未知数外的字母当做常数看待解不等式组或方程组等,然后再根据题目中对结果的限制的条件得到有关字母的代数式,最后解代数式即可得到答案.
20.一元一次不等式组的应用
对具有多种不等关系的问题,考虑列一元一次不等式组,并求解.
一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:
(1)分析题意,找出不等关系;
(2)设未知数,列出不等式组;
(3)解不等式组;
(4)从不等式组解集中找出符合题意的答案;
(5)作答.
21.点的坐标
(1)我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b).
(2)平面直角坐标系的相关概念
①建立平面直角坐标系的方法:在同一平面内画;两条有公共原点且垂直的数轴.
②各部分名称:水平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴一般取向右为正方向,y轴一般取象上为正方向,两轴交点叫坐标系的原点.它既属于x轴,又属于y轴.
(3)坐标平面的划分
建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.
(4)坐标平面内的点与有序实数对是一一对应的关系.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2021/6/27 17:11:53;用户:周晓丽;邮箱:17788760824;学号:25289867
相关试卷
这是一份2021年新初二数学人教新版专题复习《不等式与不等式组》,共37页。试卷主要包含了足球等内容,欢迎下载使用。
这是一份人教新版数学八年级下册专题复习《数据的分析》(含答案),共36页。试卷主要包含了某校男子足球队的年龄分布如下表等内容,欢迎下载使用。
这是一份人教新版数学八年级下册专题复习《勾股定理》(含答案),共56页。