2021年甘肃省武威市、定西市、平凉市、酒泉市、庆阳市中考数学真题(word版 含答案)
展开2021年甘肃省定西市中考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项。
1.3的倒数是( )
A.﹣3 B.3 C.﹣ D.
2.2021年是农历辛丑牛年,习近平总书记勉励全国各族人民在新的一年发扬“为民服务孺子牛、创新发展拓荒牛、艰苦奋斗老黄牛”精神,某社区也开展了“迎新春牛年剪纸展”,下面的剪纸作品是轴对称图形的是( )
A. B.
C. D.
3.下列运算正确的是( )
A.+=3 B.4﹣=4 C.×= D.÷=4
4.中国疫苗撑起全球抗疫“生命线”!中国外交部数据显示,截止2021年3月底,我国已无偿向80个国家和3个国际组织提供疫苗援助.预计2022年中国新冠疫苗产能有望达到50亿剂,约占全球产能的一半,必将为全球抗疫作出重大贡献.数据“50亿”用科学记数法表示为( )
A.5×108 B.5×109 C.5×1010 D.50×108
5.将直线y=5x向下平移2个单位长度,所得直线的表达式为( )
A.y=5x﹣2 B.y=5x+2 C.y=5(x+2) D.y=5(x﹣2)
6.如图,直线DE∥BF,Rt△ABC的顶点B在BF上,若∠CBF=20°,则∠ADE=( )
A.70° B.60° C.75° D.80°
7.如图,点A,B,C,D,E在⊙O上,AB=CD,∠AOB=42°,则∠CED=( )
A.48° B.24° C.22° D.21°
8.我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x人,y辆车,则可列方程组为( )
A. B.
C. D.
9.对于任意的有理数a,b,如果满足+=,那么我们称这一对数a,b为“相随数对”,记为(a,b).若(m,n)是“相随数对”,则3m+2[3m+(2n﹣1)]=( )
A.﹣2 B.﹣1 C.2 D.3
10.如图1,在△ABC中,AB=BC,BD⊥AC于点D(AD>BD).动点M从A点出发,沿折线AB→BC方向运动,运动到点C停止.设点M的运动路程为x,△AMD的面积为y,y与x的函数图象如图2,则AC的长为( )
A.3 B.6 C.8 D.9
二、填空题:本大题共8小题,每小题3分,共24分。
11.因式分解:4m﹣2m2= .
12.关于x的不等式x﹣1>的解集是 .
13.关于x的方程x2﹣2x+k=0有两个相等的实数根,则k的值是 。
14.开学前,根据学校防疫要求,小芸同学连续14天进行了体温测量,结果统计如表:
体温(℃)
36.3
36.4
36.5
36.6
36.7
36.8
天数(天)
2
3
3
4
1
1
这14天中,小芸体温的众数是 ℃。
15.如图,在矩形ABCD中,E是BC边上一点,∠AED=90°,∠EAD=30°,F是AD边的中点,EF=4cm,则BE= cm.
16.若点A(﹣3,y1),B(﹣4,y2)在反比例函数y=的图象上,则y1 y2.(填“>”或“<”或“=”)
17.如图,从一块直径为4dm的圆形铁皮上剪出一圆心角为90°的扇形,则此扇形的面积为 dm2.
18.一组按规律排列的代数式:a+2b,a2﹣2b3,a3+2b5,a4﹣2b7,…,则第n个式子是 .
三、解答题:本大题共5小题,共26分。解答时,应写出必要的文字说明、证明过程或演算步骤。
19.(4分)计算:(2021﹣π)0+()﹣1﹣2cos45°.
20.(4分)先化简,再求值:(2﹣)÷,其中x=4.
21.(6分)在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知,C是弦AB上一点,请你根据以下步骤完成这个引理的作图过程.
(1)尺规作图(保留作图痕迹,不写作法);
①作线段AC的垂直平分线DE,分别交于点D,AC于点E,连接AD,CD;
②以点D为圆心,DA长为半径作弧,交于点F(F,A两点不重合),连接DF,BD,BF.
(2)直接写出引理的结论:线段BC,BF的数量关系.
22.(6分)如图1是平凉市地标建筑“大明宝塔”,始建于明嘉靖十四年(1535年),是明代平凉韩王府延恩寺的主体建筑.宝塔建造工艺精湛,与崆峒山的凌空塔遥相呼应,被誉为平凉古塔“双璧”.某数学兴趣小组开展了测量“大明宝塔的高度”的实践活动,具体过程如下:
方案设计:如图2,宝塔CD垂直于地面,在地面上选取A,B两处分别测得∠CAD和∠CBD的度数(A,D,B在同一条直线上).
数据收集:通过实地测量:地面上A,B两点的距离为58m,∠CAD=42°,∠CBD=58°.
问题解决:求宝塔CD的高度(结果保留一位小数).
参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.
根据上述方案及数据,请你完成求解过程.
23.(6分)一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复实验后,发现摸到红色小球的频率稳定于0.75左右.
(1)请你估计箱子里白色小球的个数;
(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).
四、解答题:本大题共5小题,共40分。解答时,应写出必要的文字说明、证明过程或演算步骤。
24.(7分)为庆祝中国共产党建党100周年,某校开展了以“学习百年党史,汇聚团结伟力”为主题的知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分成A,B,C,D,E五个等级,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:
等级
成绩x
A
50≤x<60
B
60≤x<70
C
70≤x<80
D
80≤x<90
E
90≤x≤100
(1)本次调查一共随机抽取了 名学生的成绩,频数分布直方图中m= ;
(2)补全学生成绩频数分布直方图;
(3)所抽取学生成绩的中位数落在 等级;
(4)若成绩在80分及以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少人?
25.(7分)如图1,小刚家、学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离y(m)与他所用的时间x(min)的函数关系如图2所示.
(1)小刚家与学校的距离为 m,小刚骑自行车的速度为 m/min;
(2)求小刚从图书馆返回家的过程中,y与x的函数表达式;
(3)小刚出发35分钟时,他离家有多远?
26.(8分)如图,△ABC内接于⊙O,D是⊙O的直径AB的延长线上一点,∠DCB=∠OAC.过圆心O作BC的平行线交DC的延长线于点E.
(1)求证:CD是⊙O的切线;
(2)若CD=4,CE=6,求⊙O的半径及tan∠OCB的值.
27.(8分)问题解决:如图1,在矩形ABCD中,点E,F分别在AB,BC边上,DE=AF,DE⊥AF于点G.
(1)求证:四边形ABCD是正方形;
(2)延长CB到点H,使得BH=AE,判断△AHF的形状,并说明理由.
类比迁移:如图2,在菱形ABCD中,点E,F分别在AB,BC边上,DE与AF相交于点G,DE=AF,∠AED=60°,AE=6,BF=2,求DE的长.
28.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与坐标轴交于A(0,﹣2),B(4,0)两点,直线BC:y=﹣2x+8交y轴于点C.点D为直线AB下方抛物线上一动点,过点D作x轴的垂线,垂足为G,DG分别交直线BC,AB于点E,F.
(1)求抛物线y=x2+bx+c的表达式;
(2)当GF=时,连接BD,求△BDF的面积;
(3)①H是y轴上一点,当四边形BEHF是矩形时,求点H的坐标;
②在①的条件下,第一象限有一动点P,满足PH=PC+2,求△PHB周长的最小值.
2021年甘肃省定西市中考数学试卷
参考答案与试题解析
一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项。
1.3的倒数是( )
A.﹣3 B.3 C.﹣ D.
【分析】根据倒数的定义进行答题.
【解答】解:设3的倒数是a,则3a=1,
解得,a=.
故选:D.
2.2021年是农历辛丑牛年,习近平总书记勉励全国各族人民在新的一年发扬“为民服务孺子牛、创新发展拓荒牛、艰苦奋斗老黄牛”精神,某社区也开展了“迎新春牛年剪纸展”,下面的剪纸作品是轴对称图形的是( )
A. B.
C. D.
【分析】根据轴对称图形的概念判断求解.
【解答】解:A.不是轴对称图形,故此选项不合题意;
B.是轴对称图形,故此选项符合题意;
C.不是轴对称图形,故此选项不合题意;
D.不是轴对称图形,故此选项不合题意;
故选:B.
3.下列运算正确的是( )
A.+=3 B.4﹣=4 C.×= D.÷=4
【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.
【解答】解:A、原式=2,所以A选项的计算错误;
B、原式=3,所以B选项的计算错误;
C、原式==,所以C选项的计算正确;
D、原式===2,所以D选项的计算错误.
故选:C.
4.中国疫苗撑起全球抗疫“生命线”!中国外交部数据显示,截止2021年3月底,我国已无偿向80个国家和3个国际组织提供疫苗援助.预计2022年中国新冠疫苗产能有望达到50亿剂,约占全球产能的一半,必将为全球抗疫作出重大贡献.数据“50亿”用科学记数法表示为( )
A.5×108 B.5×109 C.5×1010 D.50×108
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:将50亿用科学记数法表示为5×109.
故选:B.
5.将直线y=5x向下平移2个单位长度,所得直线的表达式为( )
A.y=5x﹣2 B.y=5x+2 C.y=5(x+2) D.y=5(x﹣2)
【分析】根据“上加下减”的原则求解即可.
【解答】解:将直线y=5x向下平移2个单位长度,所得的函数解析式为y=5x﹣2.
故选:A.
6.如图,直线DE∥BF,Rt△ABC的顶点B在BF上,若∠CBF=20°,则∠ADE=( )
A.70° B.60° C.75° D.80°
【分析】根据角的和差得到∠ABF=70°,再根据两直线平行,同位角相等即可得解.
【解答】解:∵∠ABC=90°,∠CBF=20°,
∴∠ABF=∠ABC﹣∠CBF=70°,
∵DE∥BF,
∴∠ADE=∠ABF=70°,
故选:A.
7.如图,点A,B,C,D,E在⊙O上,AB=CD,∠AOB=42°,则∠CED=( )
A.48° B.24° C.22° D.21°
【分析】连接OC、OD,可得∠AOB=∠COD=42°,由圆周角定理即可得∠CED=∠COD=21°.
【解答】解:连接OC、OD,
∵AB=CD,∠AOB=42°,
∴∠AOB=∠COD=42°,
∴∠CED=∠COD=21°.
故选:D.
8.我国古代数学著作《孙子算经》有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x人,y辆车,则可列方程组为( )
A. B.
C. D.
【分析】设共有x人,y辆车,根据“如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行”,即可得出关于x,y的二元一次方程组,此题得解.
【解答】解:设共有x人,y辆车,
依题意得:.
故选:C.
9.对于任意的有理数a,b,如果满足+=,那么我们称这一对数a,b为“相随数对”,记为(a,b).若(m,n)是“相随数对”,则3m+2[3m+(2n﹣1)]=( )
A.﹣2 B.﹣1 C.2 D.3
【分析】根据(m,n)是“相随数对”得出9m+4n=0,再将原式化成9m+4n﹣2,最后整体代入求值即可.
【解答】解:∵(m,n)是“相随数对”,
∴+=,
∴=,
即9m+4n=0,
∴3m+2[3m+(2n﹣1)]
=3m+2[3m+2n﹣1]
=3m+6m+4n﹣2
=9m+4n﹣2
=0﹣2
=﹣2,
故选:A.
10.如图1,在△ABC中,AB=BC,BD⊥AC于点D(AD>BD).动点M从A点出发,沿折线AB→BC方向运动,运动到点C停止.设点M的运动路程为x,△AMD的面积为y,y与x的函数图象如图2,则AC的长为( )
A.3 B.6 C.8 D.9
【分析】先根据AB=BC结合图2得出AB=,进而利用勾股定理得,AD²+BD²=13,再由运动结合△ADM的面积的变化,得出点M和点B重合时,△ADM的面积最大,其值为3,即AD•BD=3,进而建立二元二次方程组求解,即可得出结论.
【解答】解:由图2知,AB+BC=2,
∵AB=BC,
∴AB=,
∵AB=BC,BD⊥BC,
∴AC=2AD,∠ADB=90°,
在Rt△ABD中,AD²+BD²=AB²=13①,
设点M到AC的距离为h,
∴S△ADM=AD•h,
∵动点M从A点出发,沿折线AB→BC方向运动,
∴当点M运动到点B时,△ADM的面积最大,即h=BD,
由图2知,△ADM的面积最大为3,
∴AD•BC=3,
∴AD•BD=6②,
①+2×②得,AD²+BD²+2AD•BD=13+2×6=25,
∴(AD+BD)²=25,
∴AD+BD=5(负值舍去),
∴BD=5﹣AD③,
将③代入②得,AD(5﹣AD)=6,
∴AD=3或AD=2,
∵AD>BD,
∴AD=3,
∴AC=2AD=6,
故选:B.
二、填空题:本大题共8小题,每小题3分,共24分。
11.因式分解:4m﹣2m2= 2m(2﹣m) .
【分析】提取公因式进行因式分解.
【解答】解:4m﹣2m2=2m(2﹣m),
故答案为:2m(2﹣m).
12.关于x的不等式x﹣1>的解集是 x> .
【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.
【解答】解:移项,得:x>1+,
合并同类项,得:x>,
系数化为1,得:x>,
故答案为:x>.
13.关于x的方程x2﹣2x+k=0有两个相等的实数根,则k的值是 1 。
【分析】根据根的判别式△=0,即可得出关于k的一元一次方程,解之即可得出k值.
【解答】解:∵关于x的方程x2﹣2x+k=0有两个相等的实数根,
∴△=(﹣2)2﹣4×1×k=0,
解得:k=1.
故答案为:1.
14.开学前,根据学校防疫要求,小芸同学连续14天进行了体温测量,结果统计如表:
体温(℃)
36.3
36.4
36.5
36.6
36.7
36.8
天数(天)
2
3
3
4
1
1
这14天中,小芸体温的众数是 36.6 ℃。
【分析】根据众数的定义就可解决问题.
【解答】解:36.6出现的次数最多有4次,所以众数是36.6.
故答案为:36.6.
15.如图,在矩形ABCD中,E是BC边上一点,∠AED=90°,∠EAD=30°,F是AD边的中点,EF=4cm,则BE= 6 cm.
【分析】先利用直角三角形斜边上的中线等于斜边的一半,求出AD长,再根据矩形的性质得出AD∥BC,∠B=90°,然后解直角三角形ABE即可.
【解答】解:∵∠AED=90°F是AD边的中点,EF=4,
∴AD=2EF=8,
∵∠EAD=30°,
∴AE=AD•cos∠30°=8×=4,
又∵四边形ABCD是矩形,
∴AD∥BC,∠B=90°,
∴∠BEA=∠AED=30°,
在Rt△ABE中,
BE=AE•cos∠BEA=4×cos30°=4×=6(cm),
故答案为:6.
16.若点A(﹣3,y1),B(﹣4,y2)在反比例函数y=的图象上,则y1 < y2.(填“>”或“<”或“=”)
【分析】反比例函数y=的图象在一、三象限,在每个象限内,y随x的增大而减小,判断出y的值的大小关系.
【解答】解:∵k=a2+1>0,
∴反比例函数y=的图象在一、三象限,且在每个象限内y随x的增大而减小,
∵点A(﹣3,y1),B(﹣4,y2)同在第三象限,且﹣3>﹣4,
∴y1<y2,
故答案为<.
17.如图,从一块直径为4dm的圆形铁皮上剪出一圆心角为90°的扇形,则此扇形的面积为 2π dm2.
【分析】连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式求出即可.
【解答】解:连接AC,
∵从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°,
∴AC为直径,即AC=4dm,AB=BC(扇形的半径相等),
∵AB2+BC2=22,
∴AB=BC=2dm,
∴阴影部分的面积是=2π(dm2).
故答案为:2π.
18.一组按规律排列的代数式:a+2b,a2﹣2b3,a3+2b5,a4﹣2b7,…,则第n个式子是 an+(﹣1)n+1•2b2n﹣1 .
【分析】根据已知的式子可以得到每个式子的第一项中a的次数是式子的序号;第二项的符号:第奇数项是正号,第偶数项是负号;第二项中b的次数是序号的2倍减1,据此即可写出.
【解答】解:观察代数式,得到第n个式子是:an+(﹣1)n+1•2b2n﹣1.
故答案为:an+(﹣1)n+1•2b2n﹣1.
三、解答题:本大题共5小题,共26分。解答时,应写出必要的文字说明、证明过程或演算步骤。
19.(4分)计算:(2021﹣π)0+()﹣1﹣2cos45°.
【分析】根据零指数幂,负整数指数幂,特殊角的三角函数值计算即可.
【解答】解:原式=1+2﹣2×
=3﹣.
20.(4分)先化简,再求值:(2﹣)÷,其中x=4.
【分析】首先将分式的分子与分母进行分解因式进而化简,再将x的值代入求出答案.
【解答】解:原式=(﹣)•=•=﹣,
当x=4时,原式=﹣=﹣.
21.(6分)在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知,C是弦AB上一点,请你根据以下步骤完成这个引理的作图过程.
(1)尺规作图(保留作图痕迹,不写作法);
①作线段AC的垂直平分线DE,分别交于点D,AC于点E,连接AD,CD;
②以点D为圆心,DA长为半径作弧,交于点F(F,A两点不重合),连接DF,BD,BF.
(2)直接写出引理的结论:线段BC,BF的数量关系.
【分析】(1)①根据要求作出图形即可.
②根据要求作出图形即可.
(2)证明△DFB≌△DCB可得结论.
【解答】解:(1)①如图,直线DE,线段AD,线段CD即为所求.
②如图,点F,线段CD,BD,BF即为所求作.
(2)结论:BF=BC.
理由:∵DE垂直平分线段AC,
∴DA=DC,
∴∠DAC=∠DCA,
∵AD=DF,
∴DF=DC,=,
∴∠DBC=∠DBF,
∵∠DFB+∠DAC=180°.∠DCB+∠DCA=180°,
∴∠DFB=∠DCB,
在△DFB和△DCB中,
,
∴△DFB≌△DCB(AAS),
∴BF=BC.
22.(6分)如图1是平凉市地标建筑“大明宝塔”,始建于明嘉靖十四年(1535年),是明代平凉韩王府延恩寺的主体建筑.宝塔建造工艺精湛,与崆峒山的凌空塔遥相呼应,被誉为平凉古塔“双璧”.某数学兴趣小组开展了测量“大明宝塔的高度”的实践活动,具体过程如下:
方案设计:如图2,宝塔CD垂直于地面,在地面上选取A,B两处分别测得∠CAD和∠CBD的度数(A,D,B在同一条直线上).
数据收集:通过实地测量:地面上A,B两点的距离为58m,∠CAD=42°,∠CBD=58°.
问题解决:求宝塔CD的高度(结果保留一位小数).
参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60.
根据上述方案及数据,请你完成求解过程.
【分析】设设CD=xcm,在Rt△ACD中,可得出AD=,在Rt△ACD中,BD=,再由AD+BD=AB,列式计算即可得出答案.
【解答】解:设CD=xcm,
在Rt△ACD中,AD=,
在Rt△ACD中,BD=,
∵AD+BD=AB,
∴,
解得,x≈33.4.
答:宝塔的高度约为33.4m.
23.(6分)一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复实验后,发现摸到红色小球的频率稳定于0.75左右.
(1)请你估计箱子里白色小球的个数;
(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).
【分析】(1)设白球有x个,根据多次摸球试验后发现,摸到红球的频率稳定在0.75左右可估计摸到红球的概率为0.75,据此利用概率公式列出关于x的方程,解之即可;
(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
【解答】解:(1)∵通过多次摸球试验后发现,摸到红球的频率稳定在0.75左右,
∴估计摸到红球的概率为0.75,
设白球有x个,
根据题意,得:=0.75,
解得x=1,
经检验x=1是分式方程的解,
∴估计箱子里白色小球的个数为1;
(2)画树状图为:
共有16种等可能的结果数,其中两次摸出的球恰好颜色不同的结果数为6,
∴两次摸出的小球颜色恰好不同的概率为=.
四、解答题:本大题共5小题,共40分。解答时,应写出必要的文字说明、证明过程或演算步骤。
24.(7分)为庆祝中国共产党建党100周年,某校开展了以“学习百年党史,汇聚团结伟力”为主题的知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分成A,B,C,D,E五个等级,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:
等级
成绩x
A
50≤x<60
B
60≤x<70
C
70≤x<80
D
80≤x<90
E
90≤x≤100
(1)本次调查一共随机抽取了 200 名学生的成绩,频数分布直方图中m= 16 ;
(2)补全学生成绩频数分布直方图;
(3)所抽取学生成绩的中位数落在 C 等级;
(4)若成绩在80分及以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少人?
【分析】(1)由B等级人数及其所占百分比可得被调查的总人数,总人数乘以A等级对应百分比可得m的值;
(2)总人数乘以C等级人数所占百分比求出其人数即可补全图形;
(3)根据中位数的定义求解即可;
(4)总人数乘以样本中D、E等级人数和所占比例即可.
【解答】解:(1)一共调查学生人数为40÷20%=200,A等级人数m=200×8%=16,
故答案为:200,16;
(2)∵C等级人数为200×25%=50,
补全频数分布直方图如下:
(3)由于一共有200个数据,其中位数是第100、101个数据的平均数,而第100、101个数据都落在C等级,
所以所抽取学生成绩的中位数落在C等级;
故答案为:C.
(4)估计成绩优秀的学生有2000×=940(人).
25.(7分)如图1,小刚家、学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离y(m)与他所用的时间x(min)的函数关系如图2所示.
(1)小刚家与学校的距离为 3000 m,小刚骑自行车的速度为 200 m/min;
(2)求小刚从图书馆返回家的过程中,y与x的函数表达式;
(3)小刚出发35分钟时,他离家有多远?
【分析】(1)根据函数图象和题意可以求得小刚家与学校的距离为3000m,小刚骑自行车的速度为200m/min;
(2)先求出小刚从图书馆返回家的时间,进而得出总时间,再利用待定系数法即可求出y与x之间的函数关系式;
(3)把x=35代入(2)的结论解答即可.
【解答】解:(1)由题意得,小刚家与学校的距离为3000m,
小刚骑自行车的速度为:(5000﹣3000)÷10=200(m/min),
故答案为:3000;200;
(2)小刚从图书馆返回家的时间:5000÷200=25(min),
总时间:25+20=45(min),
设小刚从图书馆返回家的过程中,y与x的函数表达式为y=kx+b,
把(20,5000),(45,0)代入得:
,解得,
∴y=﹣200x+9000(20≤x≤45);
(3)小刚出发35分钟时,即当x=35时,
y=﹣200×35+9000=2000.
答:此时他离家2000m.
26.(8分)如图,△ABC内接于⊙O,D是⊙O的直径AB的延长线上一点,∠DCB=∠OAC.过圆心O作BC的平行线交DC的延长线于点E.
(1)求证:CD是⊙O的切线;
(2)若CD=4,CE=6,求⊙O的半径及tan∠OCB的值.
【分析】(1)由等腰三角形的性质与已知条件得出,∠OCA=∠DCB,由圆周角定理可得∠ACB=90°,进而得到∠OCD=90°,即可得出结论;
(2)根据平行线分线段成比例定理得到==,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,在Rt△OCD中,根据勾股定理求出x=1,即⊙O的半径为3,由平行线的性质得到∠OCB=∠EOC,在Rt△OCE中,可求得tan∠EOC=2,即tan∠OCB=2.
【解答】(1)证明:∵OA=OC,
∴∠OAC=∠OCA,
∵∠DCB=∠OAC,
∴∠OCA=∠DCB,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠OCA+∠OCB=90°,
∴∠DCB+∠OCB=90°,
即∠OCD=90°,
∴OC⊥DC,
∵OC是⊙O的半径,
∴CD是⊙O的切线;
(2)解:∵OE∥AC,
∴=,
∵CD=4,CE=6,
∴==,
设BD=2x,则OB=OC=3x,OD=OB+BD=5x,
∵OC⊥DC,
∴△OCD是直角三角形,
在Rt△OCD中,OC2+CD2=OD2,
∴(3x)2+42=(5x)2,
解得,x=1,
∴OC=3x=3,即⊙O的半径为3,
∵BC∥OE,
∴∠OCB=∠EOC,
在Rt△OCE中,tan∠EOC===2,
∴tan∠OCB=tan∠EOC=2.
27.(8分)问题解决:如图1,在矩形ABCD中,点E,F分别在AB,BC边上,DE=AF,DE⊥AF于点G.
(1)求证:四边形ABCD是正方形;
(2)延长CB到点H,使得BH=AE,判断△AHF的形状,并说明理由.
类比迁移:如图2,在菱形ABCD中,点E,F分别在AB,BC边上,DE与AF相交于点G,DE=AF,∠AED=60°,AE=6,BF=2,求DE的长.
【分析】(1)根据矩形的性质得∠DAB=∠B=90°,由等角的余角相等可得∠ADE=∠BAF,利用AAS可得△ADE≌△BAF(AAS),由全等三角形的性质得AD=AB,即可得四边形ABCD是正方形;
(2)根据矩形的性质得∠DAB=∠ABH=90°,AB=DA,利用SAS可得△DAB≌△ABH(SAS),由全等三角形的性质得AH=DE,由已知DE=AF可得AH=AF,即可得△AHF是等腰三角形;
(3)延长CB到点H,使BH=AE=6,连接AH,利用SAS可得△DAE≌△ABH(SAS),由全等三角形的性质得AH=DE,∠AHB=∠DEA=60°,由已知DE=AF可得AH=AF,可得△AHF是等边三角形,则AH=HF=HB+BF=AE+BF=6+2=8,等量代换可得DE=AH=8.
【解答】(1)证明:∵四边形ABCD是矩形,
∴∠DAB=∠B=90°,
∵DE⊥AF,
∴∠DAB=∠AGD=90°,
∴∠BAF+∠DAF=90°,∠ADE+∠DAF=90°,
∴∠ADE=∠BAF,
∵DE=AF,
∴△ADE≌△BAF(AAS),
∴AD=AB,
∵四边形ABCD是矩形,
∴四边形ABCD是正方形;
(2)解:△AHF是等腰三角形,
理由:∵四边形ABCD是矩形,
∴∠DAB=∠ABH=90°,AB=DA,
∵BH=AE,
∴△DAB≌△ABH(SAS),
∴AH=DE,
∵DE=AF,
∴AH=AF,
∴△AHF是等腰三角形;
(3)解:延长CB到点H,使BH=AE=6,连接AH,
∵四边形ABCD是菱形,
∴AD∥BC,AB=AD,
∴∠ABH=∠BAD,
∵BH=AE,
∴△DAE≌△ABH(SAS),
∴AH=DE,∠AHB=∠DEA=60°,
∵DE=AF,
∴AH=AF,
∴△AHF是等边三角形,
∴AH=HF=HB+BF=AE+BF=6+2=8,
∴DE=AH=8.
28.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与坐标轴交于A(0,﹣2),B(4,0)两点,直线BC:y=﹣2x+8交y轴于点C.点D为直线AB下方抛物线上一动点,过点D作x轴的垂线,垂足为G,DG分别交直线BC,AB于点E,F.
(1)求抛物线y=x2+bx+c的表达式;
(2)当GF=时,连接BD,求△BDF的面积;
(3)①H是y轴上一点,当四边形BEHF是矩形时,求点H的坐标;
②在①的条件下,第一象限有一动点P,满足PH=PC+2,求△PHB周长的最小值.
【分析】(1)利用待定系数法求解即可.
(2)求出点D的坐标,可得结论.
(3)①过点H作HM⊥EF于M,证明△EMH≌△FGB(AAS),推出MH=GB,EM=FG,由HM=OG,可得OG=GB=OB=2,由题意直线AB的解析式为y=x﹣2,设E(a,﹣2a+8),F(a,a﹣2),根据MH=BG,构建方程求解,可得结论.
②因为△PHB的周长=PH+PB+HB=PC+2+PB+5=PC+PB+7,所以要使得△PHB的周长最小,只要PC+PB的值最小,因为PC+PB≥BC,所以当点P在BC上时,PC+PB=BC的值最小.
【解答】解:(1)∵抛物线y=x2+bx+c过A(0,﹣2),B(4,0)两点,
∴,
解得,
∴y=x2﹣x﹣2.
(2)∵B(4,0),A(0,﹣2),
∴OB=4,OA=2,
∵GF⊥x轴,OA⊥x轴,
在Rt△BOA和Rt△BGF中,tan∠ABO==,
即=,
∴GB=1,
∴OG=OB﹣GB=4﹣1=3,
当x=3时,yD=×9﹣×3﹣2=﹣2,
∴D(3,﹣2),即GD=2,
∴FD=GD﹣GF=2﹣=,
∴S△BDF=•DF•BG=××1=.
(3)①如图1中,过点H作HM⊥EF于M,
∵四边形BEHF是矩形,
∴EH∥BF,EH=BF,
∴∠HEF=∠BFE,
∵∠EMH=∠FGB=90°,
∴△EMH≌△FGB(AAS),
∴MH=GB,EM=FG,
∵HM=OG,
∴OG=GB=OB=2,
∵A(0,﹣2),B(4,0),
∴直线AB的解析式为y=x﹣2,
设E(a,﹣2a+8),F(a,a﹣2),
由MH=BG得到,a﹣0=4﹣a,
∴a=2,
∴E(2,4),F(2,﹣1),
∴FG=1,
∵EM=FG,
∴4﹣yH=1,
∴yH=1,
∴H(0,3).
②如图2中,
BH===5,
∵PH=PC+2,
∴△PHB的周长=PH+PB+HB=PC+2+PB+5=PC+PB+7,
要使得△PHB的周长最小,只要PC+PB的值最小,
∵PC+PB≥BC,
∴当点P在BC上时,PC+PB=BC的值最小,
∵BC===4,
∴△PHB的周长的最小值为4+7.
甘肃省平凉市、武威市2023年中考数学真题(含答案): 这是一份甘肃省平凉市、武威市2023年中考数学真题(含答案),共15页。
2023年甘肃省武威市中考数学真题: 这是一份2023年甘肃省武威市中考数学真题,文件包含2023年甘肃省武威市中考数学真题解析版docx、2023年甘肃省武威市中考数学真题原卷版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
2023年甘肃省平凉市中考数学中考真题: 这是一份2023年甘肃省平凉市中考数学中考真题,文件包含2023数学pdf、2023数学答题卡pdf等2份试卷配套教学资源,其中试卷共6页, 欢迎下载使用。