搜索
    上传资料 赚现金
    【精品】中考数学备考 专题2.7 以二次函数与圆的问题为背景的解答题(原卷版+解析版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      【精品】中考数学备考 专题2.7 以二次函数与圆的问题为背景的解答题(原卷版).doc
    • 解析
      【精品】中考数学备考 专题2.7 以二次函数与圆的问题为背景的解答题(解析版).doc
    【精品】中考数学备考 专题2.7 以二次函数与圆的问题为背景的解答题(原卷版+解析版)01
    【精品】中考数学备考 专题2.7 以二次函数与圆的问题为背景的解答题(原卷版+解析版)02
    【精品】中考数学备考 专题2.7 以二次函数与圆的问题为背景的解答题(原卷版+解析版)03
    【精品】中考数学备考 专题2.7 以二次函数与圆的问题为背景的解答题(原卷版+解析版)01
    【精品】中考数学备考 专题2.7 以二次函数与圆的问题为背景的解答题(原卷版+解析版)02
    【精品】中考数学备考 专题2.7 以二次函数与圆的问题为背景的解答题(原卷版+解析版)03
    还剩16页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【精品】中考数学备考 专题2.7 以二次函数与圆的问题为背景的解答题(原卷版+解析版)

    展开
    这是一份【精品】中考数学备考 专题2.7 以二次函数与圆的问题为背景的解答题(原卷版+解析版),文件包含精品中考数学备考专题27以二次函数与圆的问题为背景的解答题原卷版doc、精品中考数学备考专题27以二次函数与圆的问题为背景的解答题解析版doc等2份试卷配套教学资源,其中试卷共74页, 欢迎下载使用。

    【解题思路】二次函数与圆都是初中数学的重点内容,历来是中考数学命题的热点,其本身涉及的知识点就较多,综合性和解题技巧较强,给解题带来一定的困难,而将函数与圆相结合,并作为中考的压轴题,就更显得复杂了.只要我们掌握解决这类问题的思路和方法,采取分而治之,各个击破的思想,问题是会迎刃而解的.解决二次函数与圆的问题,用到的数学思想方法有化归思想、分类思想、数学结合思想,以及代入法、消元法、配方法、代定系数法等。解题时要注意各知识点之间的联系和数学思想方法、解题技巧的灵活应用,要抓住题意,化整为零,层层深入,各个击破,从而达到解决问题的目的。
    【典型例题】
    【例1】如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.
    (1)当x=2时,求⊙P的半径;
    (2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;
    (3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到 的距离等于到 的距离的所有点的集合.
    (4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cs∠APD的大小.
    【答案】(1);(2)图象为开口向上的抛物线,见解析;(3)点A;x轴;(4)
    【解析】分析:(1)由题意得到AP=PB,求出y的值,即为圆P的半径;
    (2)利用两点间的距离公式,根据AP=PB,确定出y关于x的函数解析式,画出函数图象即可;
    (3)类比圆的定义描述此函数定义即可;
    (4)画出相应图形,求出m的值,进而确定出所求角的余弦值即可.
    详解:(1)由x=2,得到P(2,y),
    连接AP,PB,
    ∵圆P与x轴相切,
    ∴PB⊥x轴,即PB=y,
    由AP=PB,得到=y,
    解得:y=,
    则圆P的半径为;
    (2)同(1),由AP=PB,得到(x﹣1)2+(y﹣2)2=y2,
    整理得:y=(x﹣1)2+1,即图象为开口向上的抛物线,
    画出函数图象,如图②所示;
    (3)给(2)中所得函数图象进行定义:此函数图象可以看成是到点A的距离等于到x轴的距离的所有点的集合;
    故答案为:点A;x轴;
    (4)连接CD,连接AP并延长,交x轴于点F,交CD于E,
    设PE=a,则有EF=a+1,ED=,
    ∴D坐标为(1+,a+1),
    代入抛物线解析式得:a+1=(1﹣a2)+1,
    解得:a=﹣2+或a=﹣2﹣(舍去),即PE=﹣2+,
    在Rt△PED中,PE=﹣2,PD=1,
    则cs∠APD==﹣2.
    【名师点睛】此题属于圆的综合题,涉及的知识有:两点间的距离公式,二次函数的图象与性质,圆的性质,勾股定理,弄清题意是解本题的关键.
    【例2】我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.
    (1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有 ;
    ②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形 “十字形”.(填“是”或“不是”)
    (2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;
    (3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;
    ①= ;②= ;③“十字形”ABCD的周长为12.
    【答案】(1)①菱形,正方形;②不是;(2)(OE>0);(3)y=x2﹣9.
    【解析】分析:(1)利用“十字形”的定义判断即可;
    (2)先判断出∠ADB+∠CAD=∠ABD+∠CAB,进而判断出∠AED=∠AEB=90°,即:AC⊥BD,再判断出四边形OMEN是矩形,进而得出OE2=2-(AC2+BD2),即可得出结论;
    (3)由题意得,A(,0),B(0,c),C(,0),D(0,-ac),求出S=AC•BD=-(ac+c)×,S1=OA•OB=-,S2=OC•OD=-,S3=OA×OD=-,S4=OB×OC=-,进而建立方程,求出a=1,再求出b=0,进而判断出四边形ABCD是菱形,求出AD=3,进而求出c=-9,即可得出结论.
    详解:(1)①∵菱形,正方形的对角线互相垂直,
    ∴菱形,正方形是:“十字形”,
    ∵平行四边形,矩形的对角线不一定垂直,
    ∴平行四边形,矩形不是“十字形”,
    故答案为:菱形,正方形;
    ②如图,
    当CB=CD时,在△ABC和△ADC中,

    ∴△ABC≌△ADC(SSS),
    ∴∠BAC=∠DAC,
    ∵AB=AD,
    ∴AC⊥BD,
    ∴当CB≠CD时,四边形ABCD不是“十字形”,
    故答案为:不是;
    (2)∵∠ADB+∠CBD=∠ABD+∠CDB,∠CBD=∠CDB=∠CAB,
    ∴∠ADB+∠CAD=∠ABD+∠CAB,
    ∴180°﹣∠AED=180°﹣∠AEB,
    ∴∠AED=∠AEB=90°,
    ∴AC⊥BD,
    过点O作OM⊥AC于M,ON⊥BD于N,连接OA,OD,
    ∴OA=OD=1,OM2=OA2﹣AM2,ON2=OD2﹣DN2,AM=AC,DN=BD,四边形OMEN是矩形,
    ∴ON=ME,OE2=OM2+ME2,
    ∴OE2=OM2+ON2=2﹣(AC2+BD2),
    ∵6≤AC2+BD2≤7,
    ∴2﹣≤OE2≤2﹣,
    ∴≤OE2≤,
    ∴≤OE≤;
    (3)由题意得,A(,0),B(0,c),C(,0),D(0,﹣ac),
    ∵a>0,c<0,
    ∴OA=,OB=﹣c,OC=,OD=﹣ac,AC=,BD=﹣ac﹣c,
    ∴S=AC•BD=﹣(ac+c)×,S1=OA•OB=﹣,S2=OC•OD=﹣,
    S3=OA×OD=﹣,S4=OB×OC=﹣,
    ∵,,
    ∴,
    ∴=2,
    ∴a=1,
    ∴S=﹣c,S1=﹣,S4=﹣,
    ∵,
    ∴S=S1+S2+2,[来源:学。科。网]
    ∴﹣c=﹣,


    ∴b=0,
    ∴A(,0),B(0,c),C(,0),d(0,﹣c),
    ∴四边形ABCD是菱形,
    ∴4AD=12,
    ∴AD=3,
    即:AD2=90,
    ∵AD2=c2﹣c,
    ∴c2﹣c=90,
    ∴c=﹣9或c=10(舍),
    即:y=x2﹣9.
    【名师点睛】此题是二次函数综合题,主要考查了新定义,平行四边形,矩形,菱形,正方形的性质,全等三角形的判定和性质,三角形的面积公式,求出a=1是解本题的关键.
    【例3】如图,已知抛物线y=mx2+2mx+c(m≠0),与y轴交于点C(0,﹣4),与x轴交于点A(﹣4,0)和点B.
    (1)求该抛物线的解析式;
    (2)若P是线段OC上的动点,过点P作PE∥OA,交AC于点E,连接AP,当△AEP的面积最大时,求此时点P的坐标;
    (3)点D为该抛物线的顶点,⊙Q为△ABD的外接圆,求证⊙Q与直线y=2相切.
    【答案】(1)y=x2+x﹣4.(2)P(0,﹣2);(3)见解析
    【解析】
    试题分析:审题知:(1)题中已知抛物线上的两个点,只需将点坐标代入抛物线解析式即可求解;
    (2)此题只需设出点P的坐标(0,t),并根据题中关系,列出△AEP面积关于t的二次函数即可求解;
    (3)此题应先求出圆心Q的坐标,在求出半径,证明圆心到直线的距离等于半径即可.
    解:(1)把点C(0,﹣4),点A(﹣4,0)坐标代入:y=mx2+2mx+c(m≠0)得:,
    解得:.
    所以:抛物线的解析式为:y=x2+x﹣4.
    (2)设点P(0,t)﹣4≤t≤0,则有:PC=t+4,OP=﹣t,OA=4
    由PE∥OA可知:三角形CPE,三角形POA,三角形AOC均为直角三角形,
    所以:,,解得:PE=t+4
    所以:S△AEP=×OA×OC﹣×OA×OP﹣×PC×PE
    =×4×4﹣×4×(﹣t)﹣×(t+4)×(t+4)
    =﹣t2﹣2t.
    所以:当t=﹣=﹣2时,△AEP的面积最大,
    此时:P(0,﹣2);
    (3)过点D作DM⊥x轴,垂足为M,
    抛物线的解析式为:y=x2+x﹣4=(x+1)2﹣
    所以:顶点D(﹣1,),点M(﹣1,0),AM=﹣1﹣(﹣4)=3
    由圆和抛物线的对称性可知:圆心Q在DM上,QM⊥AB,
    设圆Q的半径为r,则AQ=r,QM=﹣r,由勾股定理得:
    r2=+32,解得:r=,QM=﹣r=,所以点Q(﹣1,﹣)
    因为直线y=2与x轴平行,所以点Q到直线y=2的距离为:2﹣(﹣)=,
    所以:圆心Q到直线y=2的距离=圆的半径
    所以:⊙Q与直线y=2相切.
    考点:二次函数综合题.
    【名师点睛】本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,相似三角形的判定与性质,二次函数的最值问题,第一问直接代入点的坐标求解析式即可,第二问构建函数模型解决问题;第三问利用解析式求得有关点的坐标,利用勾股定理求得线段的长度,利用切线的判定方法确定即可.
    【方法归纳】函数知识要理解好数形结合的思想,知识点的掌握中要理解文字解释和图像之间的关系,至于与圆、三角形、方程的综合题,往往最后一问难度大,要建立模型、框架,完善步骤,循序渐进.
    【针对练习】
    1.如图,已知二次函数y=ax2+bx+c(a<0,c>0)与x轴交于点A、B,与y轴交于点C,且以AB为直径的圆经过点C.
    (1)若点A(﹣2,0),点B(8,0),求ac的值;
    (2)若点A(x1,0),B(x2,0),试探索ac是否为定值?若是,求出这个定值;若不是,请说明理由.
    (3)若点D是圆与抛物线的交点(D与 A、B、C 不重合),在(1)的条件下,坐标轴上是否存在一点P,使得以P、B、C为顶点的三角形与△CBD相似?若存在,请直接写出点P坐标;若不存在,请说明理由.
    2.如图1,在平面直径坐标系中,抛物线与x轴交于点A(﹣3,0).B(1,0),与y轴交于点C.
    (1)直接写出抛物线的函数解析式;
    (2)以OC为半径的⊙O与y轴的正半轴交于点E,若弦CD过AB的中点M,试求出DC的长;
    (3)将抛物线向上平移个单位长度(如图2)若动点P(x,y)在平移后的抛物线上,且点P在第三象限,请求出△PDE的面积关于x的函数关系式,并写出△PDE面积的最大值.
    3.如图1,对于平面内的点P和两条曲线、给出如下定义:若从点P任意引出一条射线分别与、交于、,总有是定值,我们称曲线与“曲似”,定值为“曲似比”,点P为“曲心”.
    例如:如图2,以点为圆心,半径分别为、都是常数的两个同心圆、,从点任意引出一条射线分别与两圆交于点M、N,因为总有是定值,所以同心圆与曲似,曲似比为,“曲心”为.
    在平面直角坐标系xOy中,直线与抛物线、分别交于点A、B,如图3所示,试判断两抛物线是否曲似,并说明理由;
    在的条件下,以O为圆心,OA为半径作圆,过点B作x轴的垂线,垂足为C,是否存在k值,使与直线BC相切?若存在,求出k的值;若不存在,说明理由;
    在、的条件下,若将“”改为“”,其他条件不变,当存在与直线BC相切时,直接写出m的取值范围及k与m之间的关系式.
    4.如图,在平面直角坐标系中,为原点,点坐标为,点坐标为,以为直径的圆与轴的负半轴交于点.
    (1)求图象经过,,三点的抛物线的解析式;
    (2)设点为所求抛物线的顶点,试判断直线与的关系,并说明理由.
    5.如图,已知点A的坐标是(﹣1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.
    (1)求抛物线的解析式;
    (2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连结BD,求直线BD的解析式;
    (3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.
    6.如图1,在平面直角坐标系中,圆D与y轴相切于点C(0,4),与x轴相交于A、B两点,且AB=6.
    (1)D点的坐标是________,圆的半径为________;
    (2)求经过C、A、B三点的抛物线所对应的函数关系式;
    (3)设抛物线的顶点为F,试证明直线AF与圆D相切;
    (4)在x轴下方的抛物线上,是否存在一点N,使△CBN面积最大,最大面积是多少?并求出N点坐标.
    7.如图,在平面直角坐标系中,圆M经过原点O,直线与x轴、y轴分别相交于A,B两点.
    (1)求出A,B两点的坐标;
    (2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;
    (3)设(2)中的抛物线交轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.
    8.如图,直线y=x+与x轴交于点A,与y轴交于点C,以AC为直径作⊙M,点D是劣弧AO上一动点(D点与A,C不重合).抛物线y=-x²+bx+c经过点A、C,与x轴交于另一点B,
    (1)求抛物线的解析式及点B的坐标;
    (2)在抛物线的对称轴上是否存在一点P,是︱PA—PC︱的值最大;若存在,求出点P的坐标;若不存在,请说明理由。
    (3)连CD交AO于点F,延长CD至G,使FG=2,试探究当点D运动到何处时,直线GA与⊙M相切,并请说明理由.
    9.如图,已知二次函数y=ax2+bx+c(a<0,c>0)与x轴交于点A、B,与y轴交于点C,且以AB为直径的圆经过点C.
    (1)若点A(﹣2,0),点B(8,0),求ac的值;
    (2)若点A(x1,0),B(x2,0),试探索ac是否为定值?若是,求出这个定值;若不是,请说明理由.
    (3)若点D是圆与抛物线的交点(D与 A、B、C 不重合),在(1)的条件下,坐标轴上是否存在一点P,使得以P、B、C为顶点的三角形与△CBD相似?若存在,请直接写出点P坐标;若不存在,请说明理由.
    10.(2016广西钦州市)如图1,在平面直径坐标系中,抛物线与x轴交于点A(﹣3,0).B(1,0),与y轴交于点C.
    (1)直接写出抛物线的函数解析式;
    (2)以OC为半径的⊙O与y轴的正半轴交于点E,若弦CD过AB的中点M,试求出DC的长;
    (3)将抛物线向上平移个单位长度(如图2)若动点P(x,y)在平移后的抛物线上,且点P在第三象限,请求出△PDE的面积关于x的函数关系式,并写出△PDE面积的最大值.
    11.如图,在平面直角坐标系中,顶点为(4,1)的抛物线交y轴于点A,交x轴于B,C两点(点B在点C的左侧),已知C点坐标为(6,0).
    (1)求此抛物线的解析式;
    (2)连结AB,过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与抛物线的对称轴l相切,先补全图形,再判断直线BD与⊙C的位置关系并加以证明;
    (3)已知点P是抛物线上的一个动点,且位于A,C两点之间.问:当点P运动到什么位置时,△PAC的面积最大?求出△PAC的最大面积.

    12.已知在平面直角坐标系xOy中,O是坐标原点,如图1,直角三角板△MON中,OM=ON=,OQ=1,直线l过点N和点N,抛物线y=ax2+x+c过点Q和点N.
    (1)求出该抛物线的解析式;
    (2)已知点P是抛物线y=ax2+x+c上的一个动点.
    ①初步尝试
    若点P在y轴右侧的该抛物线上,如图2,过点P作PA⊥y轴于点A,问:是否存在点P,使得以N、P、A为顶点的三角形与△ONQ相似.若存在,求出点P的坐标,若不存在,请说明理由;
    ②深入探究
    若点P在第一象限的该抛物线上,如图3,连结PQ,与直线MN交于点G,以QG为直径的圆交QN于点H,交x轴于点R,连结HR,求线段HR的最小值.
    13.如图,已知点A(2,0),以A为圆心作⊙A与y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.
    (1)以直线l为对称轴的抛物线过点A,抛物线与x轴的另一个交点为点C,抛物线的顶点为点E,如果CO=2BE,求此抛物线的解析式;
    (2)过点C作⊙A的切线CD,D为切点,求此切线长;
    (3)点F是切线CD上的一个动点,当△BFC与△CAD相似时,求出BF的长.
    14.在直角坐标系xOy中,已知点P是反比例函数y=(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.
    (1)如图1,当⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由;
    (2)如图2,当⊙P运动到与x轴相交,设交点为点B、C.当四边形ABCP是菱形时,求出点A、B、C的坐标;
    (3)在(2)的条件下,求出经过A、B、C三点的抛物线的解析式.
    15.如图,⊙P的圆心P(m,n)在抛物线y=上.
    (1)写出m与n之间的关系式;
    (2)当⊙P与两坐标轴都相切时,求出⊙P的半径;
    (3)若⊙P的半径是8,且它在x轴上截得的弦MN,满足0≤MN≤2时,求出m、n的范围.
    16.【材料阅读】阅读下列一段文字,然后回答下列问题.
    已知平面内两点M(x1,y1)、N(x2,y2),则这两点间的距离可用下列公式计算:
    MN= .
    例如:已知P(3,1)、Q(1,﹣2),则这两点间的距离PQ==.
    【直接应用】
    (1)已知A(2,-3)、B(-4,5),试求A、B两点间的距离;
    (2)已知△ABC的顶点坐标分别为A(0,4)、B(﹣1,2)、C(4,2),你能判定△ABC的形状吗?请说明理由.
    【深度应用】
    (3)如图,在平面直角坐标系xOy中,二次函数y=x2﹣4的图象与x轴相交于两点A、B,(点A在点B的左边)
    ①求点A、B的坐标;
    ②设点P(m,n)是以点C(3,4)为圆心、1为半径的圆上一动点,求PA2+PB2的最大值;
    17.抛物线y=x2+bx+2顶点A在x轴正半轴,交y轴于点C,点B是OA中点.
    (1)如图1,求直线BC的解析式;
    (2)如图2,将抛物线y=x2+bx+2向下平移k个单位(k>0),平移后的抛物线与直线BC交于点M、N,若S△MON=6S△BON,求k的值;
    (3)如图3,将抛物线y=x2+bx+2再进行适当平移,使平移后的抛物线的顶点D的坐标为(3,﹣1),抛物线的对称轴上有一点E,点E到x轴的距离为2(点E在x轴的上方),以点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过P作⊙E的切线,切点为Q,当PQ的长最小时,求P点的坐标,并求出PQ的最小值.
    18.如图,经过轴上两点的抛物线()交轴于点,设抛物线的顶点为,若以为直径的⊙G经过点,求解下列问题:
    (1)用含的代数式表示出的坐标;
    (2)求抛物线的解析式;
    (3)能否在抛物线上找到一点,使为直角三角形?如能,求出点的坐标,若不能,请说明理由。
    19.如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B.已知抛物线y= x2+bx+c过点A和B,与y轴交于点C.
    (1)求点C的坐标,并画出抛物线的大致图象;
    (2)点Q(8,m)在抛物线y=x2+bx+c上,点P为此抛物线对称轴上一个动点,求PQ+PB的最小值;
    (3)CE是过点C的⊙M的切线,点E是切点,求OE所在直线的解析式.
    20.如图,直线l:y=x﹣ 与x轴正半轴、y轴负半轴分别相交于A、C两点,抛物线y=x2+bx+c经过点B(﹣1,0)和点C.
    (1)填空:直接写出抛物线的解析式:_____;
    (2)已知点Q是抛物线y=x2+bx+c在第四象限内的一个动点.
    ①如图,连接AQ、CQ,设点Q的横坐标为t,△AQC的面积为S,求S与t的函数关系式,并求出S的最大值;
    ②连接BQ交AC于点D,连接BC,以BD为直径作⊙I,分别交BC、AB于点E、F,连接EF,求线段EF的最小值,并直接写出此时Q点的坐标.
    相关试卷

    【全套】中考数学专题第13关 以二次函数与圆的问题为背景的解答题(原卷版): 这是一份【全套】中考数学专题第13关 以二次函数与圆的问题为背景的解答题(原卷版),共12页。

    专题2.7 以二次函数与圆的问题为背景的解答题-2022年中考数学备考优生百日闯关系列(解析版): 这是一份专题2.7 以二次函数与圆的问题为背景的解答题-2022年中考数学备考优生百日闯关系列(解析版),共55页。

    【精品】中考数学备考 专题2.6 以二次函数与特殊四边形问题为背景的解答题(原卷版+解析版): 这是一份【精品】中考数学备考 专题2.6 以二次函数与特殊四边形问题为背景的解答题(原卷版+解析版),文件包含精品中考数学备考专题26以二次函数与特殊四边形问题为背景的解答题原卷版doc、精品中考数学备考专题26以二次函数与特殊四边形问题为背景的解答题解析版doc等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【精品】中考数学备考 专题2.7 以二次函数与圆的问题为背景的解答题(原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map