搜索
    上传资料 赚现金
    【精品】中考数学备考 专题2.1 以几何图形中的图形操作与变换问题为背景的解答题(原卷版+解析版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      【精品】中考数学备考 专题2.1 以几何图形中的图形操作与变换问题为背景的解答题(原卷版).doc
    • 解析
      【精品】中考数学备考 专题2.1 以几何图形中的图形操作与变换问题为背景的解答题(解析版).doc
    【精品】中考数学备考 专题2.1 以几何图形中的图形操作与变换问题为背景的解答题(原卷版+解析版)01
    【精品】中考数学备考 专题2.1 以几何图形中的图形操作与变换问题为背景的解答题(原卷版+解析版)02
    【精品】中考数学备考 专题2.1 以几何图形中的图形操作与变换问题为背景的解答题(原卷版+解析版)03
    【精品】中考数学备考 专题2.1 以几何图形中的图形操作与变换问题为背景的解答题(原卷版+解析版)01
    【精品】中考数学备考 专题2.1 以几何图形中的图形操作与变换问题为背景的解答题(原卷版+解析版)02
    【精品】中考数学备考 专题2.1 以几何图形中的图形操作与变换问题为背景的解答题(原卷版+解析版)03
    还剩10页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【精品】中考数学备考 专题2.1 以几何图形中的图形操作与变换问题为背景的解答题(原卷版+解析版)

    展开
    这是一份【精品】中考数学备考 专题2.1 以几何图形中的图形操作与变换问题为背景的解答题(原卷版+解析版),文件包含精品中考数学备考专题21以几何图形中的图形操作与变换问题为背景的解答题原卷版doc、精品中考数学备考专题21以几何图形中的图形操作与变换问题为背景的解答题解析版doc等2份试卷配套教学资源,其中试卷共74页, 欢迎下载使用。

    【考查知识点】图形的变换有轴对称、平移和旋转,在此类问题中轴对称问题多以折叠的形式出现。折叠问题也是最近中考的热点,这类问题不但考察学生对基本几何图形性质的掌握情况,而且可以培养学生的空间思维能力和运动变化观念,提高学生的实践操作水平。图形的旋转是中考题的新题型,热点题型,考察内容:①中心对称和中心对称图形的性质和别。②旋转,平移的性质.
    【解题思路】折叠类题目的主要出题结合点有:与三角形结合,与平行四边形结合,与圆结合,与函数图像结合,题型多以选择题和填空题的形式出现,少数题目也会在大题中作为辅助背景。在解决这类问题时,要注意折叠出等角,折叠出等长,折叠出等腰三角形,折叠出全等与相似等。图形的旋转是中考题的新题型,热点题型,解题方法①熟练掌握图形的对称,图形的平移,图形的旋转的基本性质和基本作图法。②结合具体的问题大胆尝试,动手操作平移,旋转,探究发现其内在的规律。③注重对网格内和坐标内的图形的变换试题的研究,熟练掌握其常用的解题方法。④关注图形与变换创新题,弄清其本质,掌握基本解题方法,如动手操作法,折叠法,旋转法,旋转可以移动图形的位置而不改变图形的大小,是全等变换. 变换的目的是为了实现已知与结论中的相关元素的相对集中或分散重组,使表面上不能发生联系的元素联系起来.在转化的基础上为问题的解决铺设桥梁,沟通到路.一些难度较大的问题借助平移、对称、旋转的合成及相互关系可能会更容易一些.
    【典型例题】
    【例1】如图,在矩形ABCD中,AB=3,BC=5,E是AD上的一个动点.
    (1)如图1,连接BD,O是对角线BD的中点,连接OE.当OE=DE时,求AE的长;
    (2)如图2,连接BE,EC,过点E作EF⊥EC交AB于点F,连接CF,与BE交于点G.当BE平分∠ABC时,求BG的长;
    (3)如图3,连接EC,点H在CD上,将矩形ABCD沿直线EH折叠,折叠后点D落在EC上的点D'处,过点D′作D′N⊥AD于点N,与EH交于点M,且AE=1.
    ①求 的值;
    ②连接BE,△D'MH与△CBE是否相似?请说明理由.

    【答案】(1)AE=;(2)BG=;(3)①;②相似,理由见解析.
    (3)①先求出EC=5,再求出D'C=1,根据勾股定理求出DH=,CH=,再判断出△EMN∽△EHD,得出,△ED'M∽△ECH,得出,进而得出,即可得出结论;
    ②先判断出∠MD'H=∠NED',进而判断出∠MD'H=∠ECB,即可得出,即可.
    【详解】
    (1)如图1,连接OA,

    在矩形ABCD中,CD=AB=3,AD=BC=5,∠BAD=90°
    在Rt△ABD中,根据勾股定理得,BD=,
    ∵O是BD中点,
    ∴OD=OB=OA=,
    ∴∠OAD=∠ODA,
    ∵OE=DE,
    ∴∠EOD=∠ODE,
    ∴∠EOD=∠ODE=∠OAD,
    ∴△ODE∽△ADO,
    ∴,
    ∴DO2=DE•DA,
    ∴设AE=x,
    ∴DE=5﹣x,
    ∴()2=5(5﹣x),
    ∴x=,
    即:AE=;

    ∴∠CED=∠AFE,
    ∵∠D=∠A=90°,
    ∴△AEF≌△DCE,
    ∴AF=DE=2,
    ∴BF=AB﹣AF=1,
    过点G作GK⊥BC于K,
    ∴∠EBC=∠BGK=45°,
    ∴BK=GK,∠ABC=∠GKC=90°,
    ∵∠KCG=∠BCF,*网
    ∴△CHG∽△CBF,
    ∴,
    设BK=GK=y,
    ∴CK=5﹣y,
    ∴y=,
    ∴BK=GK=,
    在Rt△GKB中,BG=;

    ∴DH=,CH=,
    ∵D'N⊥AD,
    ∴∠AND'=∠D=90°,
    ∴D'N∥DC,
    ∴△EMN∽△EHD,
    ∴,
    ∵D'N∥DC,
    ∴∠ED'M=∠ECH,
    ∵∠MED'=∠HEC,
    ∴△ED'M∽△ECH,
    ∴,*网
    ∴,
    ∴,
    ∴;

    ∵CE=CB=5,

    ∴△D'MH∽△CBE.
    【名师点睛】此题是相似形综合题,主要考查了矩形的性质,相似三角形的判定和性质,勾股定理,角平分线的定义,熟练掌握判定两三角形相似的方法是解本题的关键.此外在折叠问题中,需要抓住对应边相等,对应角相等这些等量关系,折叠问题的实质是轴对称的性质.
    【例2】已知在Rt△ABC中,∠BAC=90°,CD为∠ACB的平分线,将∠ACB沿CD所在的直线对折,使点B落在点B′处,连结AB',BB',延长CD交BB'于点E,设∠ABC=2α(0°<α<45°).

    (1)如图1,若AB=AC,求证:CD=2BE;
    (2)如图2,若AB≠AC,试求CD与BE的数量关系(用含α的式子表示);
    (3)如图3,将(2)中的线段BC绕点C逆时针旋转角(α+45°),得到线段FC,连结EF交BC于点O,设△COE的面积为S1,△COF的面积为S2,求(用含α的式子表示).
    【答案】(1)证明见解析;(2)CD=2•BE•tan2α;(3)sin(45°﹣α).
    (3) 首先证明∠ECF=90°,由∠BEC+∠ECF=180°,推出BB′∥CF,推出sin(45°﹣α),由此即可解决问题.
    【详解】
    (1)如图1中,
    ∵B、B′关于EC对称,
    ∴BB′⊥EC,BE=EB′,
    ∴∠DEB=∠DAC=90°,
    ∵∠EDB=∠ADC,
    ∴∠DBE=∠ACD,
    ∵AB=AC,∠BAB′=∠DAC=90°,
    ∴△BAB′≌CAD,
    ∴CD=BB′=2BE;

    (2)如图2中,结论:CD=2•BE•tan2α,
    理由:由(1)可知:∠ABB′=∠ACD,∠BAB′=∠CAD=90°,
    ∴△BAB′∽△CAD,
    ∴,
    ∴,
    ∴CD=2•BE•tan2α;

    (3)如图 3中.在Rt△ABC中,∠ACB=90°﹣2α,
    ∵EC平分∠ACB,

    【名师点睛】本题考查几何变换综合题、等腰直角三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、平行线等分线段定理、锐角三角函数等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题.
    【例3】如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(-3,0).动点M,N同时从A点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C时,另一个动点也随之停止移动,移动时间记为t秒.连接MN.
    (1)求直线BC的解析式;
    (2)移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t值及点D的坐标;
    (3)当点M,N移动时,记△ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式.

    【答案】(1)y=x+4;(2)D(-,);(3)①当0 【详解】
    (1)设直线的解析式为,则,
    解得,
    直线的解析式为.
    (2)如图,连接交于点.

    由题意:四边形是菱形,,,,
    ,,,,
    点在上,

    解得.
    时,点恰好落在边上点处,此时,.

    【名师点睛】本题考查了一次函数综合题、待定系数法、菱形的判定和性质、相似三角形的判定和性质、锐角三角函数、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.
    【方法归纳】实践操作性试题以成为中考命题的热点,很多省市的压轴的都是这类题型,解决这种类型的题目可从以下方面切入:
    1.构造定理所需的图形或基本图形.在解决问题的过程中,有时添辅助线是必不可少的。中考对学生添线的要求不是很高,只需连接两点或作垂直、平行,而且添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形.
    2. 切入点二:做不出、找相似,有相似,用相似.压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
    3. 紧扣不变量,并善于使用前题所采用的方法或结论.在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
    4. 展开联想,寻找解决过的问题. 在题目中你总可以找到与你解决过的问题有相类似的情况,可能图形相似,可能条件相似,可能结论相似,此时你就应考虑原来题目是怎样解决的,与现题目有何不同。原有的题目是如何解决的,所使用的方法或结论在这里是不是可以使用,或有借鉴之处。
    5. 在题目中寻找多解的信息图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解.
    【针对练习】
    1.将一副三角尺按图1摆放,等腰直角三角尺的直角边DF恰好垂直平分AB,与AC相交于点G,.
    (1)求GC的长;
    (2)如图2,将△DEF绕点D顺时针旋转,使直角边DF经过点C,另一直角边DE与AC相交于点H,分别过H、C作AB的垂线,垂足分别为M、N,通过观察,猜想MD与ND的数量关系,并验证你的猜想.
    (3)在(2)的条件下,将△DEF沿DB方向平移得到△D′E′F′,当D′E′恰好经过(1)中的点G时,请直接写出DD′的长度.[来源:网][来源:网]

    【答案】(1)2;(2)DM=DN;(3)
    【详解】
    (1)如图1.

    在Rt△ABC中,∵BC=2,∠B=60°,∴AC=BC•tan60°=6,AB=2BC=4.
    ∵DF是线段AB的垂直平分线,∴AD=BD=2.
    在Rt△ADG中,AG4,∴CG=AC=AG=6﹣4=2.

    (3)如图3中,作GK∥DE交AB由K.

    在△AGK中,AG=GK=4,∠A=∠GKD=30°,作GH⊥AB于H.学&
    则AH=AG•cos30°=2,可得AK=2AH=4,此时K与B重合,∴DD′=DB=2.[来源:网ZXXK]
    2.如图1,在▱ABCD中,DH⊥AB于点H,CD的垂直平分线交CD于点E,交AB于点F,AB=6,DH=4,BF:FA=1:5.
    (1)如图2,作FG⊥AD于点G,交DH于点M,将△DGM沿DC方向平移,得到△CG′M′,连接M′B.
    ①求四边形BHMM′的面积;
    ②直线EF上有一动点N,求△DNM周长的最小值.
    (2)如图3,延长CB交EF于点Q,过点Q作QK∥AB,过CD边上的动点P作PK∥EF,并与QK交于点K,将△PKQ沿直线PQ翻折,使点K的对应点K′恰好落在直线AB上,求线段CP的长.

    【答案】(1)①四边形BHMM′的面积为7.5;②△DNM周长的最小值为9;(2)CP的长为或.
    【详解】(1)①在▱ABCD中,AB=6,直线EF垂直平分CD,
    ∴DE=FH=3,
    又BF:FA=1:5,
    ∴AH=2,
    ∵Rt△AHD∽Rt△MHF,
    ∴,
    即,
    ∴HM=1.5,
    根据平移的性质,MM'=CD=6,连接BM,如图1,
    四边形BHMM′的面积==7.5;

    ②连接CM交直线EF于点N,连接DN,如图2,

    ∵直线EF垂直平分CD,
    ∴CN=DN,
    ∵MH=1.5,
    ∴DM=2.5,
    在Rt△CDM中,MC2=DC2+DM2,
    ∴MC2=62+(2.5)2,
    即MC=6.5,
    ∵MN+DN=MN+CN=MC,
    ∴△DNM周长的最小值为9;

    ∴,
    即,
    解得:QF′=,
    ∴PE=PE'﹣EE'=,
    ∴CP=,学&
    同理可得,当点P在线段DE上时,CP′=,,如图4,

    综上所述,CP的长为或.
    3.在中,,,,过点作直线,将绕点顺时针得到(点,的对应点分别为,),射线,分别交直线于点,.
    (1)如图1,当与重合时,求的度数;
    (2)如图2,设与的交点为,当为的中点时,求线段的长;
    (3)在旋转过程时,当点分别在,的延长线上时,试探究四边形的面积是否存在最小值.若存在,求出四边形的最小面积;若不存在,请说明理由.
    【答案】(1)60°;(2);(3)
    【解析】分析:(1)由旋转可得:AC=A'C=2,进而得到BC=,依据∠A'BC=90°,可得cos∠A'CB=,即可得到∠A'CB=30°,∠ACA'=60°;
    详解:(1)由旋转可得:AC=A'C=2,
    ∵∠ACB=90°,AB=,AC=2,
    ∴BC=,
    ∵∠ACB=90°,m∥AC,
    ∴∠A'BC=90°,
    ∴cos∠A'CB=,
    ∴∠A'CB=30°,
    ∴∠ACA'=60°;
    (2)∵M为A'B'的中点,
    ∴∠A'CM=∠MA'C,
    由旋转可得,∠MA'C=∠A,
    ∴∠A=∠A'CM,
    ∴tan∠PCB=tan∠A=,

    ∴PB=BC=,
    ∵tan∠Q=tan∠A=,
    ∴BQ=BC×=2,
    ∴PQ=PB+BQ=;
    (3)∵S四边形PA'B′Q=S△PCQ-S△A'CB'=S△PCQ-,
    ∴S四边形PA'B′Q最小,即S△PCQ最小,
    ∴S△PCQ=PQ×BC=PQ,
    取PQ的中点G,则∠PCQ=90°,
    ∴CG=PQ,即PQ=2CG,
    当CG最小时,PQ最小,学*
    ∴CG⊥PQ,即CG与CB重合时,CG最小,
    ∴CGmin=,PQmin=2,
    ∴S△PCQ的最小值=3,S四边形PA'B′Q=3-.
    4.如图1.在△ABC中,矩形EFGH的一边EF在AB上,顶点G、H分别在BC、AC上,CD是边AB上的高,CD交GH于点I.若CI=4,HI=3,AD.矩形DFGI恰好为正方形.

    (1)求正方形DFGI的边长;
    (2)如图2,延长AB至P.使得AC=CP,将矩形EFGH沿BP的方向向右平移,当点G刚好落在CP上时,试判断移动后的矩形与△CBP重叠部分的形状是三角形还是四边形,为什么?
    (3)如图3,连接DG,将正方形DFGI绕点D顺时针旋转一定的角度得到正方形DF′G′I′,正方形DF′G′I′分别与线段DG、DB相交于点M、N,求△MNG′的周长.
    【答案】(1)2;(2)三角形;(3)4.

    (2)如图2中,设点G落在PC时对应的点为G′,点F的对应的点为F′.求出IG′和BD的长比较即可判定;
    (3)如图3中,如图将△DMI′绕点D逆时针旋转90°得到△DF′R,此时N、F′、R共线.想办法证明MN=MI′+NF′,即可解决问题.

    (2)三角形,理由如下:
    如图2中,设点G落在PC时对应的点为G′,点F的对应的点为F′.

    ∵CA=CP,CD⊥PA,∴∠ACD=∠PCD,∠A=∠P,
    ∵HG′∥PA,
    ∴∠CHG′=∠A,∠CG′H=∠P,
    ∴∠CHG′=∠CG′H,∴CH=CG′,
    ∴IH=IG′=DF′=3,学*
    ∵IG∥DB,∴,
    ∴,∴DB=3,
    ∴DB=DF′=3,∴点B与点F′重合,
    ∴移动后的矩形与△CBP重叠部分是△BGG′,
    ∴移动后的矩形与△CBP重叠部分的形状是三角形;
    (3)如图3中,如图将△DMI′绕点D逆时针旋转90°得到△DF′R,此时N、F′、R共线.

    ∵∠MDN=∠NDF+∠MDI′=∠NDF′+∠DF′R=∠NDR=45°,
    ∵DN=DN,DM=DR,
    ∴△NDM≌△NDR,
    ∴MN=NR=NF′+RF′=NF′+MI′,
    ∴△MNG′的周长=MN+MG′+NG′=MG′+MI′+NG′+F′R=2I′G′=4.
    5.在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点,,的对应点分别为,,.

    (Ⅰ)如图①,当点落在边上时,求点的坐标;
    (Ⅱ)如图②,当点落在线段上时,与交于点.
    ①求证;
    ②求点的坐标.
    (Ⅲ)记为矩形对角线的交点,为的面积,求的取值范围(直接写出结果即可).
    【答案】(Ⅰ)点的坐标为.(Ⅱ)①证明见解析;②点的坐标为.(Ⅲ).
    中,运用勾股定理可求得AH的值,进而求得答案;

    (Ⅱ)①由四边形是矩形,得.
    又点在线段上,得.
    由(Ⅰ)知,,又,,
    ∴.
    ②由,得.
    又在矩形中,,学……
    ∴.∴.∴.
    设,则,.
    在中,有,
    ∴.解得.∴.
    ∴点的坐标为.

    (Ⅲ).
    6.在等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,∠EMF=135°.将∠EMF绕点M旋转,使∠EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题:
    (1)当∠EMF绕点M旋转到如图①的位置时,求证:BE+CF=BM;
    (2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明;
    (3)在(1)和(2)的条件下,tan∠BEM=,AN=+1,则BM=   ,CF=   .

    【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣
    ②如图③时,同(1)可证△BME≌△NMF,可得CF﹣BE=BM;
    (3) 在Rt△ABM和Rt△ANM中,,
    可得Rt△ABM≌Rt△ANM,后分别求出AB、 AC、 CN 、BM、 BE的长,结合(1)(2)的结论对图①②③进行讨论可得CF的长.

    在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°,
    ∵∠ENF=135°,,
    ∴∠BME=∠NMF,
    ∴△BME≌△NMF,
    ∴BE=NF,
    ∵MN⊥AC,∠C=45°,
    ∴∠CMN=∠C=45°,
    ∴NC=NM=BM,
    ∵CN=CF+NF,
    ∴BE+CF=BM;
    (2)针对图2,同(1)的方法得,△BME≌△NMF,
    ∴BE=NF,
    ∵MN⊥AC,∠C=45°,
    ∴∠CMN=∠C=45°,
    ∴NC=NM=BM,
    ∵NC=NF﹣CF,
    ∴BE﹣CF=BM;
    针对图3,同(1)的方法得,△BME≌△NMF,
    ∴BE=NF,
    ∵MN⊥AC,∠C=45°,
    ∴∠CMN=∠C=45°,
    ∴NC=NM=BM,
    ∵NC=CF﹣NF,
    ∴CF﹣BE=BM;

    ∴BM=BC﹣CM=+1﹣=1,
    在Rt△BME中,tan∠BEM===,
    ∴BE=,
    ∴①由(1)知,如图1,BE+CF=BM,
    ∴CF=BM﹣BE=1﹣
    ②由(2)知,如图2,由tan∠BEM=,
    ∴此种情况不成立;
    ③由(2)知,如图3,CF﹣BE=BM,
    ∴CF=BM+BE=1+,
    故答案为1,1+或1﹣.
    7.如图,在中,,,,D、E分别是斜边AB、直角边BC上的点,把沿着直线DE折叠.

    如图1,当折叠后点B和点A重合时,用直尺和圆规作出直线DE;不写作法和证明,保留作图痕迹
    如图2,当折叠后点B落在AC边上点P处,且四边形PEBD是菱形时,求折痕DE的长.
    【答案】画图见解析;.
    【详解】
    作直线AB的垂直平分线DE,如图1所示;

    在中,,,,

    连接BP,如图2所示,

    四边形PEBD是菱形,

    设,则,
    ,[来源:学_科_网]
    ∽,
    ,即,

    ,,
    在中,,,

    在中,,,

    又,


    8.请认真阅读下面的数学小探究系列,完成所提出的问题:

    探究1:如图1,在等腰直角三角形ABC中,,,将边AB绕点B顺时针旋转得到线段BD,连接求证:的面积为提示:过点D作BC边上的高DE,可证≌
    探究2:如图2,在一般的中,,,将边AB绕点B顺时针旋转得到线段BD,连接请用含a的式子表示的面积,并说明理由.
    探究3:如图3,在等腰三角形ABC中,,,将边AB绕点B顺时针旋转得到线段BD,连接试探究用含a的式子表示的面积,要有探究过程.
    【答案】(1)详见解析;(2)的面积为,理由详见解析;(3)的面积为.
    如图3,过点A作与F,过点D作的延长线于点E,由等腰三角形的性质可以得出,由条件可以得出≌就可以得出,由三角形的面积公式就可以得出结论.
    【详解】
    如图1,过点D作交CB的延长线于E,


    由旋转知,,,



    在和中,





    的面积为,
    理由:如图2,过点D作BC的垂线,与BC的延长线交于点E,


    线段AB绕点B顺时针旋转得到线段BE,
    ,,



    在和中,

    ≌,



    如图3,过点A作与F,过点D作的延长线于点E,

    ,,




    线段BD是由线段AB旋转得到的,

    在和中,

    ≌,


    的面积为.
    9.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.
    (1)求证:BE=CE
    (2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)
    ①求证:△BEM≌△CEN;
    ②若AB=2,求△BMN面积的最大值;
    ③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.

    【答案】(1)详见解析;(2)①详见解析;②2;③.
    【详解】
    (1)证明:如图1中,

    ∵四边形ABCD是矩形,
    ∴AB=DC,∠A=∠D=90°,
    ∵E是AD中点,
    ∴AE=DE,
    ∴△BAE≌△CDE,
    ∴BE=CE.

    ②∵△BEM≌△CEN,
    ∴BM=CN,设BM=CN=x,则BN=4-x,
    ∴S△BMN=•x(4-x)=-(x-2)2+2,
    ∵-<0,
    ∴x=2时,△BMN的面积最大,最大值为2.
    ③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=m,EB=m.

    ∴EG=m+m=(1+)m,
    ∵S△BEG=•EG•BN=•BG•EH,
    ∴EH==m,*网
    在Rt△EBH中,sin∠EBH=.
    10.已知△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC的中点,将△ADE绕点A按顺时针方向旋转一个角度α(0°<α<90°)得到△AD'E′,连接BD′、CE′,如图1.
    (1)求证:BD′=CE';
    (2)如图2,当α=60°时,设AB与D′E′交于点F,求的值.

    【答案】(1)详见解析;(2).
    【详解】
    (1)证明:∵AB=AC,D、E分别是AB、AC的中点,
    ∴AD=BD=AE=EC.
    由旋转的性质可知:∠DAD′=∠EAE′=α,AD′=AD,AE′=AE.
    ∴AD′=AE′,
    ∴△BD′A≌△CE′A,
    ∴BD′=CE′.

    ∴.
    11.(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=46°,则∠DBE的度数为   °.
    (2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.
    (画一画)
    如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);
    (算一算)
    如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A′,B′处,若AG=,求B′D的长;
    (验一验)
    如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点A,B分别落在点A′,B′处,小明认为B′I所在直线恰好经过点D,他的判断是否正确,请说明理由.

    【答案】(1)23;(2)【画一画】画图见解析;【算一算】DB′ =3;【验一验】小明的判断不正确,理由见解析.
    DB′的长即可;
    验一验:如图4中,小明的判断不正确,连接ID,根据勾股定理求出CK长,根据已知可证明△CDK∽△IB′C,从而可得,设CB′=3k,IB′=4k,IC=5k,根据折叠的性质可求得k=1,继而可得IC=5,IB′=4,B′C=3,在Rt△ICB′中,tan∠B′IC=,连接ID,在Rt△ICD中,tan∠DIC=,从而知tan∠B′IC≠tan∠DIC,判断出B′I所在的直线不经过点D即可得.*网
    【详解】
    (1)如图1中,

    ∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠ADB=∠DBC=46°,
    由翻折不变性可知,∠DBE=∠EBC=∠DBC=23°,
    故答案为:23;
    (2)画一画:如图2中,

    算一算:如图3中,

    ∵AG=,AD=9,
    ∴GD=9﹣=,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠DGF=∠BFG,
    [来源:网]
    ∴CK==5,
    ∵AD∥BC,
    ∴∠DKC=∠ICK,
    由折叠可知,∠A′B′I=∠B=90°,
    ∴∠IB′C=90°=∠D,
    ∴△CDK∽△IB′C,
    ∴,即,
    设CB′=3k,IB′=4k,IC=5k,
    由折叠可知,IB=IB′=4k,
    ∴BC=BI+IC=4k+5k=9,
    ∴k=1,
    ∴IC=5,IB′=4,B′C=3,
    在Rt△ICB′中,tan∠B′IC=,
    连接ID,在Rt△ICD中,tan∠DIC=,
    ∴tan∠B′IC≠tan∠DIC,
    ∴B′I所在的直线不经过点D.
    12.如图,△ABC中,AB=BC,BD⊥AC于点D,∠FAC=∠ABC,且∠FAC在AC下方.点P,Q分别是射线BD,射线AF上的动点,且点P不与点B重合,点Q不与点A重合,连接CQ,过点P作PE⊥CQ于点E,连接DE.

    (1)若∠ABC=60°,BP=AQ.
    ①如图1,当点P在线段BD上运动时,请直接写出线段DE和线段AQ的数量关系和位置关系;
    ②如图2,当点P运动到线段BD的延长线上时,试判断①中的结论是否成立,并说明理由;
    (2)若∠ABC=2α≠60°,请直接写出当线段BP和线段AQ满足什么数量关系时,能使(1)中①的结论仍然成立(用含α的三角函数表示).
    【答案】(1)①DE=AQ,DE∥AQ,理由见解析;② E∥AQ,DE=AQ,理由见解析;(2)AQ=2BP•sinα,理由见解析.
    【详解】
    (1)①DE=AQ,DE∥AQ,
    理由:如图1,连接PC,PQ,
    在△ABC中,AB=AC,∠ABC=60°,
    ∴△ABC是等边三角形,
    ∴∠ACB=60°,AC=BC,
    ∵AB=BC,BD⊥AC,
    ∴AD=CD,∠ABD=∠CBD=∠BAC,
    ∵∠CAF=∠ABC,
    ∴∠CBP=∠CAQ,
    在△BPC和△AQC中,,
    ∴△BPC≌△AQC(SAS),
    ∴PC=QC,∠BPC=∠ACQ,
    ∴∠PCQ=∠PCA+∠AQC=∠PCA+∠BCP=∠ACB=60°,
    ∴△PCQ是等边三角形,
    ∵PE⊥CQ,
    ∴CE=QE,
    ∵AD=CD,
    ∴DE=AQ,DE∥AQ;
    ②DE∥AQ,DE=AQ,
    理由:如图2,连接PQ,PC,
    同①的方法得出DE∥AQ,DE=AQ;
    (2)AQ=2BP•sinα,
    理由:连接PQ,PC,
    要使DE=AQ,DE∥AQ,
    ∵AD=CD,
    ∴CE=QE,
    ∵PE⊥CQ,
    ∴PQ=PC,
    易知,PA=PC,
    ∴PA=PE=PC
    ∴以点P为圆心,PA为半径的圆必过A,Q,C,
    ∴∠APQ=2∠ACQ,
    ∵PA=PQ,

    ∴△BPC∽△AQC,
    ∴,
    在Rt△BCD中,sinα=,
    ∴=2×=2sinα,
    ∴AQ=2BP•sinα.

    13.如图,在平面直角坐标系中,点F的坐标为(0,10).点E的坐标为(20,0),直线l1经过点F和点E,直线l1与直线l2 、y=x相交于点P.
    (1)求直线l1的表达式和点P的坐标;
    (2)矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.已知矩形ABCD以每秒个单位的速度匀速移动(点A移动到点E时止移动),设移动时间为t秒(t>0).
    ①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;
    ②若矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.

    【答案】(1)直线l1的表达式为y=﹣x+10,点P坐标为(8,6);(2)①t值为或;②当t=时,△PMN的面积等于18.
    【详解】(1)设直线l1的表达式为y=kx+b,
    ∵直线l1过点F(0,10),E(20,0),
    ∴,解得:,
    直线l1的表达式为y=﹣x+10,
    解方程组得,
    ∴点P坐标为(8,6);
    (2)①如图,当点D在直线上l2时,

    ∵AD=9
    ∴点D与点A的横坐标之差为9,
    ∴将直线l1与直线l2 的解析式变形为x=20﹣2y,x=y,
    ∴y﹣(20﹣2y)=9,
    解得:y=,
    ∴x=20﹣2y=,
    则点A的坐标为:(,),
    则AF=,
    ∵点A速度为每秒个单位,
    ∴t=;
    如图,当点B在l2 直线上时,

    ∵AB=6,
    ∴点A的纵坐标比点B的纵坐标高6个单位,
    ∴直线l1的解析式减去直线l2 的解析式得,
    ﹣x+10﹣x=6,
    解得x=,
    y=﹣x+10=,
    则点A坐标为(,)
    则AF=,
    ∵点A速度为每秒个单位,
    ∴t=,
    故t值为或;

    此时点P到MN距离为:a+9﹣8=a+1,
    ∵△PMN的面积等于18,
    ∴=18,
    解得
    a1=-1,a2=﹣-1(舍去),
    ∴AF=6﹣,
    则此时t为,
    当t=时,△PMN的面积等于18.
    14.如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.
    (1)请直接写出CM和EM的数量关系和位置关系;
    (2)把图1中的正方形DEFG绕点D顺时针旋转45°,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;
    (3)把图1中的正方形DEFG绕点D顺时针旋转90°,此时点E、G恰好分别落在线段AD、CD上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.

    【答案】(1)CM=EM,CM⊥EM,理由见解析;(2)(1)中的结论成立,理由见解析;(3)(1)中的结论成立,理由见解析.

    理由:∵AD∥EF,AD∥BC,
    ∴BC∥EF,
    ∴∠EFM=∠HBM,
    在△FME和△BMH中,
    ,,
    ∴△FME≌△BMH,
    ∴HM=EM,EF=BH,
    ∵CD=BC,
    ∴CE=CH,∵∠HCE=90°,HM=EM,
    ∴CM=ME,CM⊥EM.
    (2)如图2,连接AE,

    ∵四边形ABCD和四边形EDGF是正方形,
    ∴∠FDE=45°,∠CBD=45°,
    ∴点B、E、D在同一条直线上,
    ∵∠BCF=90°,∠BEF=90°,M为AF的中点,
    ∴CM=AF,EM=AF,
    ∴CM=ME,
    ∵∠EFD=45°,
    ∴∠EFC=135°,
    ∵CM=FM=ME,
    ∴∠MCF=∠MFC,∠MFE=∠MEF,
    ∴∠MCF+∠MEF=135°,
    ∴∠CME=360°-135°-135°=90°,
    ∴CM⊥ME.
    (3)如图3,连接CF,MG,作MN⊥CD于N,

    在△EDM和△GDM中,

    15.(1)问题发现
    如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:
    ①的值为   ;
    ②∠AMB的度数为   .
    (2)类比探究
    如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;
    (3)拓展延伸
    在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.

    【答案】(1)①1;②40°;(2),90°;(3)AC的长为3或2.
    (2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则,由全等三角形的性质得∠AMB的度数;
    (3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.
    详解:(1)问题发现:
    ①如图1,

    ∵∠AOB=∠COD=40°,
    ∴∠COA=∠DOB,
    ∵OC=OD,OA=OB,
    ∴△COA≌△DOB(SAS),
    ∴AC=BD,

    ②∵△COA≌△DOB,
    ∴∠CAO=∠DBO,
    ∵∠AOB=40°,
    ∴∠OAB+∠ABO=140°,
    在△AMB中,∠AMB=180°-(∠CAO+∠OAB+∠ABD)=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°,
    (2)类比探究:
    如图2,,∠AMB=90°,理由是:
    Rt△COD中,∠DCO=30°,∠DOC=90°,
    ∴,
    同理得:,
    ∴,
    ∵∠AOB=∠COD=90°,
    ∴∠AOC=∠BOD,
    ∴△AOC∽△BOD,
    ∴ ,∠CAO=∠DBO,
    在△AMB中,∠AMB=180°-(∠MAB+∠ABM)=180°-(∠OAB+∠ABM+∠DBO)=90°;

    Rt△AOB中,∠OAB=30°,OB=,
    ∴AB=2OB=2,
    在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,
    (x)2+(x−2)2=(2)2,
    x2-x-6=0,
    (x-3)(x+2)=0,
    x1=3,x2=-2,
    ∴AC=3;
    ②点C与点M重合时,如图4,

    同理得:∠AMB=90°,,
    设BD=x,则AC=x,
    在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,
    (x)2+(x+2)2=(2)2.
    x2+x-6=0,
    (x+3)(x-2)=0,
    x1=-3,x2=2,
    ∴AC=2;.学*
    综上所述,AC的长为3或2.
    16.如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.
    (1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);
    (2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;
    (3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)

    【答案】(1)作图见解析;(2)EB是平分∠AEC,理由见解析; (3)△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.
    【详解】(1)依题意作出图形如图①所示;


    在Rt△ADE中,AD=,DE=1,
    ∴tan∠AED==,
    ∴∠AED=60°,
    ∴∠BCE=∠AED=60°,
    ∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,
    ∴BE平分∠AEC;
    (3)∵BP=2CP,BC==,
    ∴CP=,BP=,
    在Rt△CEP中,tan∠CEP==,
    ∴∠CEP=30°,
    ∴∠BEP=30°,
    ∴∠AEP=90°,
    ∵CD∥AB,
    ∴∠F=∠CEP=30°,
    在Rt△ABP中,tan∠BAP==,
    ∴∠PAB=30°,
    ∴∠EAP=30°=∠F=∠PAB,
    ∵CB⊥AF,
    ∴AP=FP,
    ∴△AEP≌△FBP,
    ∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,
    变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.
    17.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P作PF∥BC,交对角线BD于点F.

    (1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;
    (2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).
    ①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.
    ②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.
    【答案】(1)证明见解析;(2)①证明见解析;②或 .
    ②由于△DF'B是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.

    (2)①若0°<α<∠BDC,即DF'在∠BDC的内部时,
    ∵∠P′DF′=∠PDF,
    ∴∠P′DF′﹣∠F′DC=∠PDF﹣∠F′DC,
    ∴∠P′DC=∠F′DB,
    由旋转的性质可知:△DP′F′≌△DPF,
    ∵PF∥BC,
    ∴△DPF∽△DCB,
    ∴△DP′F′∽△DCB
    ∴ ,
    ∴△DP'C∽△DF'B;
    ②当∠F′DB=90°时,如图所示,
    ∵DF′=DF=BD,
    ∴,
    ∴tan∠DBF′=;

    当∠DBF′=90°,此时DF′是斜边,即DF′>DB,不符合题意;
    当∠DF′B=90°时,如图所示,
    ∵DF′=DF=BD,
    ∴∠DBF′=30°,
    ∴tan∠DBF′=.

    18.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.

    (1)求证:AD2=DP•PC;
    (2)请判断四边形PMBN的形状,并说明理由;
    (3)如图2,连接AC,分别交PM,PB于点E,F.若=,求的值.
    【答案】(1)证明见解析;(2)四边形PMBN是菱形,理由见解析;(3)
    详解:(1)过点P作PG⊥AB于点G,

    ∴易知四边形DPGA,四边形PCBG是矩形,
    ∴AD=PG,DP=AG,GB=PC
    ∵∠APB=90°,
    ∴∠APG+∠GPB=∠GPB+∠PBG=90°,
    ∴∠APG=∠PBG,
    ∴△APG∽△PBG,
    ∴,
    ∴PG2=AG•GB,
    即AD2=DP•PC;

    (3)由于,
    可设DP=k,AD=2k,
    由(1)可知:AG=DP=k,PG=AD=2k,
    ∵PG2=AG•GB,
    ∴4k2=k•GB,
    ∴GB=PC=4k,
    AB=AG+GB=5k,
    ∵CP∥AB,
    ∴△PCF∽△BAF,
    ∴,
    ∴,
    又易证:△PCE∽△MAE,AM=AB=,

    ∴,
    ∴EF=AF-AE=AC-AC=AC,
    ∴.
    19.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°
    操作:将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q.
    探究一:在旋转过程中,
    (1)如图2,当时,EP与EQ满足怎样的数量关系?并给出证明;
    (2)如图3,当时,EP与EQ满足怎样的数量关系?并说明理由;
    (3)根据你对(1)、(2)的探究结果,试写出当时,EP与EQ满足的数量关系式为   ,其中m的取值范围是   .(直接写出结论,不必证明)
    探究二:若且AC=30cm,连接PQ,设△EPQ的面积为S(cm2),在旋转过程中:
    (1)S是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.
    (2)随着S取不同的值,对应△EPQ的个数有哪些变化,求出相应S的值或取值范围.

    【答案】探究一:(1)EP=EQ;证明见解析;(2)1:2,证明见解析;(3)EP:EQ=1:m,∴0<m≤2+;探究二:(1)当x=10时,面积最小,是50cm2;当x=10时,面积最大,是75cm2.(2)50<S≤62.5时,这样的三角形有2个;当S=50或62.5<S≤75时,这样的三角形有一个.
    【详解】探究一:(1)连接BE,
    根据E是AC的中点和等腰直角三角形的性质,得
    BE=CE,∠PBE=∠C,
    又∠BEP=∠CEQ,
    则△BEP≌△CEQ,得EP=EQ;
    (2)作EM⊥AB,EN⊥BC于M,N,
    ∴∠EMP=∠ENC,
    ∵∠MEP+∠PEN=∠PEN+∠NEF=90°,
    ∴∠MEP=∠NEF,
    ∴△MEP∽△NEQ,
    ∴EP:EQ=EM:EN=AE:CE=1:2;
    (3)过E点作EM⊥AB于点M,作EN⊥BC于点N,
    ∵在四边形PEQB中,∠B=∠PEQ=90°,
    ∴∠EPB+∠EQB=180°(四边形的内角和是360°),
    又∵∠EPB+∠MPE=180°(平角是180°),
    ∴∠MPE=∠EQN(等量代换),
    ∴Rt△MEP∽Rt△NEQ,
    ∴,
    在Rt△AME∽Rt△ENC,
    ∴,
    ∴,
    EP与EQ满足的数量关系式为EP:EQ=1:m,
    ∴0<m≤2+;(当m>2+时,EF与BC不会相交).
    探究二:若AC=30cm,
    (1)设EQ=x,则S=x2,
    所以当x=10时,面积最小,是50cm2;
    当x=10时,面积最大,是75cm2;

    20.如图,矩形ABCD中,AB=m,BC=n,将此矩形绕点B顺时针方向旋转θ(0°<θ<90°)得到矩形A1BC1D1,点A1在边CD上.
    (1)若m=2,n=1,求在旋转过程中,点D到点D1所经过路径的长度;
    (2)将矩形A1BC1D1继续绕点B顺时针方向旋转得到矩形A2BC2D2,点D2在BC的延长线上,设边A2B与CD交于点E,若=﹣1,求的值.

    【答案】(1)D到点D1所经过路径的长度为π;(2)(负根已经舍弃).
    详解:(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.

    ∴AD=HA1=n=1,
    在Rt△A1HB中,∵BA1=BA=m=2,
    ∴BA1=2HA1,
    ∴∠ABA1=30°,
    ∴旋转角为30°,
    ∵BD=,
    ∴D到点D1所经过路径的长度=

    21.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
    (1)证明与推断:
    ①求证:四边形CEGF是正方形;
    ②推断:的值为   :
    (2)探究与证明:
    将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:
    (3)拓展与运用:
    正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC=   .

    【答案】(1)①四边形CEGF是正方形;②;(2)线段AG与BE之间的数量关系为AG=BE;(3)3
    【详解】(1)①∵四边形ABCD是正方形,
    ∴∠BCD=90°,∠BCA=45°,
    ∵GE⊥BC、GF⊥CD,
    ∴∠CEG=∠CFG=∠ECF=90°,
    ∴四边形CEGF是矩形,∠CGE=∠ECG=45°,
    ∴EG=EC,
    ∴四边形CEGF是正方形;
    ②由①知四边形CEGF是正方形,
    ∴∠CEG=∠B=90°,∠ECG=45°,
    ∴,GE∥AB,
    ∴,
    故答案为:;
    (2)连接CG,

    由旋转性质知∠BCE=∠ACG=α,
    在Rt△CEG和Rt△CBA中,
    =cos45°=、=cos45°=,
    ∴=,
    ∴△ACG∽△BCE,
    ∴,
    ∴线段AG与BE之间的数量关系为AG=BE;


    相关试卷

    【全套】中考数学专题第7关 以几何图形中的图形操作与变换问题为背景的解答题(原卷版): 这是一份【全套】中考数学专题第7关 以几何图形中的图形操作与变换问题为背景的解答题(原卷版),共12页。

    【全套】中考数学专题第7关 以几何图形中的图形操作与变换问题为背景的解答题(解析版): 这是一份【全套】中考数学专题第7关 以几何图形中的图形操作与变换问题为背景的解答题(解析版),共67页。

    【全套】中考数学专题第2关 以几何图形中的图形操作与变换问题为背景的选择填空题(原卷版): 这是一份【全套】中考数学专题第2关 以几何图形中的图形操作与变换问题为背景的选择填空题(原卷版),共9页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        【精品】中考数学备考 专题2.1 以几何图形中的图形操作与变换问题为背景的解答题(原卷版+解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map